Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfxp Structured version   Visualization version   GIF version

Theorem isfxp 33132
Description: Property of being a fixed point. (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
fxpgaval.s 𝑈 = (Base‘𝐺)
fxpgaval.a (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
isfxp.x (𝜑𝑋𝐶)
Assertion
Ref Expression
isfxp (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋))
Distinct variable groups:   𝐴,𝑝   𝐺,𝑝   𝑈,𝑝   𝑋,𝑝
Allowed substitution hints:   𝜑(𝑝)   𝐶(𝑝)

Proof of Theorem isfxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isfxp.x . 2 (𝜑𝑋𝐶)
2 fxpgaval.s . . . . 5 𝑈 = (Base‘𝐺)
3 fxpgaval.a . . . . 5 (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
42, 3fxpgaval 33131 . . . 4 (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
54eleq2d 2817 . . 3 (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ 𝑋 ∈ {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥}))
6 oveq2 7354 . . . . . 6 (𝑥 = 𝑋 → (𝑝𝐴𝑥) = (𝑝𝐴𝑋))
7 id 22 . . . . . 6 (𝑥 = 𝑋𝑥 = 𝑋)
86, 7eqeq12d 2747 . . . . 5 (𝑥 = 𝑋 → ((𝑝𝐴𝑥) = 𝑥 ↔ (𝑝𝐴𝑋) = 𝑋))
98ralbidv 3155 . . . 4 (𝑥 = 𝑋 → (∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥 ↔ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋))
109elrab 3647 . . 3 (𝑋 ∈ {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} ↔ (𝑋𝐶 ∧ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋))
115, 10bitrdi 287 . 2 (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ (𝑋𝐶 ∧ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋)))
121, 11mpbirand 707 1 (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  cfv 6481  (class class class)co 7346  Basecbs 17117   GrpAct cga 19199  FixPtscfxp 33127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-ga 19200  df-fxp 33128
This theorem is referenced by:  fxpsubm  33136  fxpsubg  33137  fxpsubrg  33138  fxpsdrg  33139  issply  33579
  Copyright terms: Public domain W3C validator