| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfxp | Structured version Visualization version GIF version | ||
| Description: Property of being a fixed point. (Contributed by Thierry Arnoux, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fxpgaval.s | ⊢ 𝑈 = (Base‘𝐺) |
| fxpgaval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| isfxp.x | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| isfxp | ⊢ (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑋) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfxp.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
| 2 | fxpgaval.s | . . . . 5 ⊢ 𝑈 = (Base‘𝐺) | |
| 3 | fxpgaval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐺 GrpAct 𝐶)) | |
| 4 | 2, 3 | fxpgaval 33132 | . . . 4 ⊢ (𝜑 → (𝐶FixPts𝐴) = {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥}) |
| 5 | 4 | eleq2d 2815 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ 𝑋 ∈ {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥})) |
| 6 | oveq2 7402 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑝𝐴𝑥) = (𝑝𝐴𝑋)) | |
| 7 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 8 | 6, 7 | eqeq12d 2746 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑝𝐴𝑥) = 𝑥 ↔ (𝑝𝐴𝑋) = 𝑋)) |
| 9 | 8 | ralbidv 3158 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥 ↔ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑋) = 𝑋)) |
| 10 | 9 | elrab 3667 | . . 3 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥} ↔ (𝑋 ∈ 𝐶 ∧ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑋) = 𝑋)) |
| 11 | 5, 10 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ (𝑋 ∈ 𝐶 ∧ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑋) = 𝑋))) |
| 12 | 1, 11 | mpbirand 707 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑋) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 {crab 3411 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 GrpAct cga 19227 FixPtscfxp 33128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-map 8805 df-ga 19228 df-fxp 33129 |
| This theorem is referenced by: fxpsubm 33137 |
| Copyright terms: Public domain | W3C validator |