| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isfxp | Structured version Visualization version GIF version | ||
| Description: Property of being a fixed point. (Contributed by Thierry Arnoux, 18-Nov-2025.) |
| Ref | Expression |
|---|---|
| fxpgaval.s | ⊢ 𝑈 = (Base‘𝐺) |
| fxpgaval.a | ⊢ (𝜑 → 𝐴 ∈ (𝐺 GrpAct 𝐶)) |
| isfxp.x | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| isfxp | ⊢ (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑋) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfxp.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
| 2 | fxpgaval.s | . . . . 5 ⊢ 𝑈 = (Base‘𝐺) | |
| 3 | fxpgaval.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐺 GrpAct 𝐶)) | |
| 4 | 2, 3 | fxpgaval 33131 | . . . 4 ⊢ (𝜑 → (𝐶FixPts𝐴) = {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥}) |
| 5 | 4 | eleq2d 2817 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ 𝑋 ∈ {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥})) |
| 6 | oveq2 7354 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝑝𝐴𝑥) = (𝑝𝐴𝑋)) | |
| 7 | id 22 | . . . . . 6 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 8 | 6, 7 | eqeq12d 2747 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝑝𝐴𝑥) = 𝑥 ↔ (𝑝𝐴𝑋) = 𝑋)) |
| 9 | 8 | ralbidv 3155 | . . . 4 ⊢ (𝑥 = 𝑋 → (∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥 ↔ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑋) = 𝑋)) |
| 10 | 9 | elrab 3647 | . . 3 ⊢ (𝑋 ∈ {𝑥 ∈ 𝐶 ∣ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑥) = 𝑥} ↔ (𝑋 ∈ 𝐶 ∧ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑋) = 𝑋)) |
| 11 | 5, 10 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ (𝑋 ∈ 𝐶 ∧ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑋) = 𝑋))) |
| 12 | 1, 11 | mpbirand 707 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝐶FixPts𝐴) ↔ ∀𝑝 ∈ 𝑈 (𝑝𝐴𝑋) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 GrpAct cga 19199 FixPtscfxp 33127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-ga 19200 df-fxp 33128 |
| This theorem is referenced by: fxpsubm 33136 fxpsubg 33137 fxpsubrg 33138 fxpsdrg 33139 issply 33579 |
| Copyright terms: Public domain | W3C validator |