Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fxpgaeq Structured version   Visualization version   GIF version

Theorem fxpgaeq 33145
Description: A fixed point 𝑋 is invariant under group action 𝐴 (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
fxpgaval.s 𝑈 = (Base‘𝐺)
fxpgaval.a (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
fxpgaeq.x (𝜑𝑋 ∈ (𝐶FixPts𝐴))
fxpgaeq.p (𝜑𝑃𝑈)
Assertion
Ref Expression
fxpgaeq (𝜑 → (𝑃𝐴𝑋) = 𝑋)

Proof of Theorem fxpgaeq
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7359 . . 3 (𝑝 = 𝑃 → (𝑝𝐴𝑋) = (𝑃𝐴𝑋))
21eqeq1d 2735 . 2 (𝑝 = 𝑃 → ((𝑝𝐴𝑋) = 𝑋 ↔ (𝑃𝐴𝑋) = 𝑋))
3 fxpgaeq.x . . . . 5 (𝜑𝑋 ∈ (𝐶FixPts𝐴))
4 fxpgaval.s . . . . . 6 𝑈 = (Base‘𝐺)
5 fxpgaval.a . . . . . 6 (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
64, 5fxpgaval 33143 . . . . 5 (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
73, 6eleqtrd 2835 . . . 4 (𝜑𝑋 ∈ {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
8 oveq2 7360 . . . . . . 7 (𝑥 = 𝑋 → (𝑝𝐴𝑥) = (𝑝𝐴𝑋))
9 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
108, 9eqeq12d 2749 . . . . . 6 (𝑥 = 𝑋 → ((𝑝𝐴𝑥) = 𝑥 ↔ (𝑝𝐴𝑋) = 𝑋))
1110ralbidv 3156 . . . . 5 (𝑥 = 𝑋 → (∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥 ↔ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋))
1211elrab 3643 . . . 4 (𝑋 ∈ {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} ↔ (𝑋𝐶 ∧ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋))
137, 12sylib 218 . . 3 (𝜑 → (𝑋𝐶 ∧ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋))
1413simprd 495 . 2 (𝜑 → ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋)
15 fxpgaeq.p . 2 (𝜑𝑃𝑈)
162, 14, 15rspcdva 3574 1 (𝜑 → (𝑃𝐴𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396  cfv 6486  (class class class)co 7352  Basecbs 17122   GrpAct cga 19203  FixPtscfxp 33139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-map 8758  df-ga 19204  df-fxp 33140
This theorem is referenced by:  fxpsubm  33148  fxpsubg  33149  fxpsubrg  33150  fxpsdrg  33151
  Copyright terms: Public domain W3C validator