Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fxpgaeq Structured version   Visualization version   GIF version

Theorem fxpgaeq 33126
Description: A fixed point 𝑋 is invariant under group action 𝐴 (Contributed by Thierry Arnoux, 18-Nov-2025.)
Hypotheses
Ref Expression
fxpgaval.s 𝑈 = (Base‘𝐺)
fxpgaval.a (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
fxpgaeq.x (𝜑𝑋 ∈ (𝐶FixPts𝐴))
fxpgaeq.p (𝜑𝑃𝑈)
Assertion
Ref Expression
fxpgaeq (𝜑 → (𝑃𝐴𝑋) = 𝑋)

Proof of Theorem fxpgaeq
Dummy variables 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7394 . . 3 (𝑝 = 𝑃 → (𝑝𝐴𝑋) = (𝑃𝐴𝑋))
21eqeq1d 2731 . 2 (𝑝 = 𝑃 → ((𝑝𝐴𝑋) = 𝑋 ↔ (𝑃𝐴𝑋) = 𝑋))
3 fxpgaeq.x . . . . 5 (𝜑𝑋 ∈ (𝐶FixPts𝐴))
4 fxpgaval.s . . . . . 6 𝑈 = (Base‘𝐺)
5 fxpgaval.a . . . . . 6 (𝜑𝐴 ∈ (𝐺 GrpAct 𝐶))
64, 5fxpgaval 33124 . . . . 5 (𝜑 → (𝐶FixPts𝐴) = {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
73, 6eleqtrd 2830 . . . 4 (𝜑𝑋 ∈ {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥})
8 oveq2 7395 . . . . . . 7 (𝑥 = 𝑋 → (𝑝𝐴𝑥) = (𝑝𝐴𝑋))
9 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
108, 9eqeq12d 2745 . . . . . 6 (𝑥 = 𝑋 → ((𝑝𝐴𝑥) = 𝑥 ↔ (𝑝𝐴𝑋) = 𝑋))
1110ralbidv 3156 . . . . 5 (𝑥 = 𝑋 → (∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥 ↔ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋))
1211elrab 3659 . . . 4 (𝑋 ∈ {𝑥𝐶 ∣ ∀𝑝𝑈 (𝑝𝐴𝑥) = 𝑥} ↔ (𝑋𝐶 ∧ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋))
137, 12sylib 218 . . 3 (𝜑 → (𝑋𝐶 ∧ ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋))
1413simprd 495 . 2 (𝜑 → ∀𝑝𝑈 (𝑝𝐴𝑋) = 𝑋)
15 fxpgaeq.p . 2 (𝜑𝑃𝑈)
162, 14, 15rspcdva 3589 1 (𝜑 → (𝑃𝐴𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405  cfv 6511  (class class class)co 7387  Basecbs 17179   GrpAct cga 19221  FixPtscfxp 33120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-ga 19222  df-fxp 33121
This theorem is referenced by:  fxpsubm  33129
  Copyright terms: Public domain W3C validator