![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnsg4 | Structured version Visualization version GIF version |
Description: A subgroup is normal iff its normalizer is the entire group. (Contributed by Mario Carneiro, 18-Jan-2015.) |
Ref | Expression |
---|---|
elnmz.1 | ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} |
nmzsubg.2 | ⊢ 𝑋 = (Base‘𝐺) |
nmzsubg.3 | ⊢ + = (+g‘𝐺) |
Ref | Expression |
---|---|
isnsg4 | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmzsubg.2 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | nmzsubg.3 | . . 3 ⊢ + = (+g‘𝐺) | |
3 | 1, 2 | isnsg 19035 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
4 | eqcom 2740 | . . . 4 ⊢ (𝑁 = 𝑋 ↔ 𝑋 = 𝑁) | |
5 | elnmz.1 | . . . . 5 ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} | |
6 | 5 | eqeq2i 2746 | . . . 4 ⊢ (𝑋 = 𝑁 ↔ 𝑋 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}) |
7 | rabid2 3465 | . . . 4 ⊢ (𝑋 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)} ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) | |
8 | 4, 6, 7 | 3bitri 297 | . . 3 ⊢ (𝑁 = 𝑋 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)) |
9 | 8 | anbi2i 624 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) |
10 | 3, 9 | bitr4i 278 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 {crab 3433 ‘cfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 SubGrpcsubg 19000 NrmSGrpcnsg 19001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-subg 19003 df-nsg 19004 |
This theorem is referenced by: conjnsg 19128 |
Copyright terms: Public domain | W3C validator |