MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjnsg Structured version   Visualization version   GIF version

Theorem conjnsg 19193
Description: A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
Assertion
Ref Expression
conjnsg ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 = ran 𝐹)
Distinct variable groups:   𝑥,   𝑥, +   𝑥,𝐴   𝑥,𝐺   𝑥,𝑆   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem conjnsg
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 19097 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 eqid 2730 . . . . . 6 {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}
3 conjghm.x . . . . . 6 𝑋 = (Base‘𝐺)
4 conjghm.p . . . . . 6 + = (+g𝐺)
52, 3, 4isnsg4 19106 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = 𝑋))
65simprbi 496 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} = 𝑋)
76eleq2d 2815 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐴 ∈ {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ↔ 𝐴𝑋))
87biimpar 477 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋) → 𝐴 ∈ {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)})
9 conjghm.m . . 3 = (-g𝐺)
10 conjsubg.f . . 3 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
113, 4, 9, 10, 2conjnmz 19191 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ {𝑦𝑋 ∣ ∀𝑧𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)}) → 𝑆 = ran 𝐹)
121, 8, 11syl2an2r 685 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cmpt 5191  ran crn 5642  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  -gcsg 18874  SubGrpcsubg 19059  NrmSGrpcnsg 19060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-nsg 19063
This theorem is referenced by:  sylow3lem6  19569
  Copyright terms: Public domain W3C validator