| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isofr2 | Structured version Visualization version GIF version | ||
| Description: A weak form of isofr 7283 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| isofr2 | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
| 2 | imassrn 6026 | . . . 4 ⊢ (𝐻 “ 𝑥) ⊆ ran 𝐻 | |
| 3 | isof1o 7264 | . . . . 5 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | |
| 4 | f1of 6768 | . . . . 5 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) | |
| 5 | frn 6663 | . . . . 5 ⊢ (𝐻:𝐴⟶𝐵 → ran 𝐻 ⊆ 𝐵) | |
| 6 | 3, 4, 5 | 3syl 18 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝐻 ⊆ 𝐵) |
| 7 | 2, 6 | sstrid 3949 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 “ 𝑥) ⊆ 𝐵) |
| 8 | ssexg 5265 | . . 3 ⊢ (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐻 “ 𝑥) ∈ V) | |
| 9 | 7, 8 | sylan 580 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝐻 “ 𝑥) ∈ V) |
| 10 | 1, 9 | isofrlem 7281 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 Fr wfr 5573 ran crn 5624 “ cima 5626 ⟶wf 6482 –1-1-onto→wf1o 6485 Isom wiso 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-fr 5576 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |