![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isofr2 | Structured version Visualization version GIF version |
Description: A weak form of isofr 7378 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
isofr2 | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | imassrn 6100 | . . . 4 ⊢ (𝐻 “ 𝑥) ⊆ ran 𝐻 | |
3 | isof1o 7359 | . . . . 5 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | |
4 | f1of 6862 | . . . . 5 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) | |
5 | frn 6754 | . . . . 5 ⊢ (𝐻:𝐴⟶𝐵 → ran 𝐻 ⊆ 𝐵) | |
6 | 3, 4, 5 | 3syl 18 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝐻 ⊆ 𝐵) |
7 | 2, 6 | sstrid 4020 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 “ 𝑥) ⊆ 𝐵) |
8 | ssexg 5341 | . . 3 ⊢ (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐻 “ 𝑥) ∈ V) | |
9 | 7, 8 | sylan 579 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝐻 “ 𝑥) ∈ V) |
10 | 1, 9 | isofrlem 7376 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 Fr wfr 5649 ran crn 5701 “ cima 5703 ⟶wf 6569 –1-1-onto→wf1o 6572 Isom wiso 6574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-fr 5652 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |