MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofr2 Structured version   Visualization version   GIF version

Theorem isofr2 7195
Description: A weak form of isofr 7193 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isofr2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))

Proof of Theorem isofr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 imassrn 5969 . . . 4 (𝐻𝑥) ⊆ ran 𝐻
3 isof1o 7174 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1of 6700 . . . . 5 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
5 frn 6591 . . . . 5 (𝐻:𝐴𝐵 → ran 𝐻𝐵)
63, 4, 53syl 18 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝐻𝐵)
72, 6sstrid 3928 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ⊆ 𝐵)
8 ssexg 5242 . . 3 (((𝐻𝑥) ⊆ 𝐵𝐵𝑉) → (𝐻𝑥) ∈ V)
97, 8sylan 579 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝐻𝑥) ∈ V)
101, 9isofrlem 7191 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3422  wss 3883   Fr wfr 5532  ran crn 5581  cima 5583  wf 6414  1-1-ontowf1o 6417   Isom wiso 6419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-fr 5535  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator