MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofr2 Structured version   Visualization version   GIF version

Theorem isofr2 7319
Description: A weak form of isofr 7317 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isofr2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))

Proof of Theorem isofr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 imassrn 6042 . . . 4 (𝐻𝑥) ⊆ ran 𝐻
3 isof1o 7298 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1of 6800 . . . . 5 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
5 frn 6695 . . . . 5 (𝐻:𝐴𝐵 → ran 𝐻𝐵)
63, 4, 53syl 18 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝐻𝐵)
72, 6sstrid 3958 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ⊆ 𝐵)
8 ssexg 5278 . . 3 (((𝐻𝑥) ⊆ 𝐵𝐵𝑉) → (𝐻𝑥) ∈ V)
97, 8sylan 580 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝐻𝑥) ∈ V)
101, 9isofrlem 7315 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3447  wss 3914   Fr wfr 5588  ran crn 5639  cima 5641  wf 6507  1-1-ontowf1o 6510   Isom wiso 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-fr 5591  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator