![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isofr2 | Structured version Visualization version GIF version |
Description: A weak form of isofr 7288 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
isofr2 | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | imassrn 6025 | . . . 4 ⊢ (𝐻 “ 𝑥) ⊆ ran 𝐻 | |
3 | isof1o 7269 | . . . . 5 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | |
4 | f1of 6785 | . . . . 5 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) | |
5 | frn 6676 | . . . . 5 ⊢ (𝐻:𝐴⟶𝐵 → ran 𝐻 ⊆ 𝐵) | |
6 | 3, 4, 5 | 3syl 18 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝐻 ⊆ 𝐵) |
7 | 2, 6 | sstrid 3956 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 “ 𝑥) ⊆ 𝐵) |
8 | ssexg 5281 | . . 3 ⊢ (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐻 “ 𝑥) ∈ V) | |
9 | 7, 8 | sylan 581 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝐻 “ 𝑥) ∈ V) |
10 | 1, 9 | isofrlem 7286 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 Vcvv 3444 ⊆ wss 3911 Fr wfr 5586 ran crn 5635 “ cima 5637 ⟶wf 6493 –1-1-onto→wf1o 6496 Isom wiso 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-id 5532 df-fr 5589 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |