MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofr2 Structured version   Visualization version   GIF version

Theorem isofr2 7348
Description: A weak form of isofr 7346 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isofr2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))

Proof of Theorem isofr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 481 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 imassrn 6072 . . . 4 (𝐻𝑥) ⊆ ran 𝐻
3 isof1o 7327 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1of 6835 . . . . 5 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
5 frn 6727 . . . . 5 (𝐻:𝐴𝐵 → ran 𝐻𝐵)
63, 4, 53syl 18 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝐻𝐵)
72, 6sstrid 3990 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ⊆ 𝐵)
8 ssexg 5320 . . 3 (((𝐻𝑥) ⊆ 𝐵𝐵𝑉) → (𝐻𝑥) ∈ V)
97, 8sylan 578 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝐻𝑥) ∈ V)
101, 9isofrlem 7344 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  Vcvv 3462  wss 3946   Fr wfr 5626  ran crn 5675  cima 5677  wf 6542  1-1-ontowf1o 6545   Isom wiso 6547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-id 5572  df-fr 5629  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator