MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofr2 Structured version   Visualization version   GIF version

Theorem isofr2 7286
Description: A weak form of isofr 7284 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isofr2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))

Proof of Theorem isofr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 imassrn 6026 . . . 4 (𝐻𝑥) ⊆ ran 𝐻
3 isof1o 7265 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1of 6770 . . . . 5 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
5 frn 6665 . . . . 5 (𝐻:𝐴𝐵 → ran 𝐻𝐵)
63, 4, 53syl 18 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝐻𝐵)
72, 6sstrid 3942 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ⊆ 𝐵)
8 ssexg 5265 . . 3 (((𝐻𝑥) ⊆ 𝐵𝐵𝑉) → (𝐻𝑥) ∈ V)
97, 8sylan 580 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝐻𝑥) ∈ V)
101, 9isofrlem 7282 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  Vcvv 3437  wss 3898   Fr wfr 5571  ran crn 5622  cima 5624  wf 6484  1-1-ontowf1o 6487   Isom wiso 6489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-fr 5574  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator