![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isofr2 | Structured version Visualization version GIF version |
Description: A weak form of isofr 7335 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
isofr2 | ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | imassrn 6068 | . . . 4 ⊢ (𝐻 “ 𝑥) ⊆ ran 𝐻 | |
3 | isof1o 7316 | . . . . 5 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | |
4 | f1of 6830 | . . . . 5 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → 𝐻:𝐴⟶𝐵) | |
5 | frn 6721 | . . . . 5 ⊢ (𝐻:𝐴⟶𝐵 → ran 𝐻 ⊆ 𝐵) | |
6 | 3, 4, 5 | 3syl 18 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝐻 ⊆ 𝐵) |
7 | 2, 6 | sstrid 3992 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 “ 𝑥) ⊆ 𝐵) |
8 | ssexg 5322 | . . 3 ⊢ (((𝐻 “ 𝑥) ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → (𝐻 “ 𝑥) ∈ V) | |
9 | 7, 8 | sylan 580 | . 2 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝐻 “ 𝑥) ∈ V) |
10 | 1, 9 | isofrlem 7333 | 1 ⊢ ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵 ∈ 𝑉) → (𝑆 Fr 𝐵 → 𝑅 Fr 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 Fr wfr 5627 ran crn 5676 “ cima 5678 ⟶wf 6536 –1-1-onto→wf1o 6539 Isom wiso 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-fr 5630 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |