MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isofr2 Structured version   Visualization version   GIF version

Theorem isofr2 7096
Description: A weak form of isofr 7094 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
isofr2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))

Proof of Theorem isofr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 486 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 imassrn 5916 . . . 4 (𝐻𝑥) ⊆ ran 𝐻
3 isof1o 7075 . . . . 5 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
4 f1of 6606 . . . . 5 (𝐻:𝐴1-1-onto𝐵𝐻:𝐴𝐵)
5 frn 6508 . . . . 5 (𝐻:𝐴𝐵 → ran 𝐻𝐵)
63, 4, 53syl 18 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ran 𝐻𝐵)
72, 6sstrid 3905 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ⊆ 𝐵)
8 ssexg 5196 . . 3 (((𝐻𝑥) ⊆ 𝐵𝐵𝑉) → (𝐻𝑥) ∈ V)
97, 8sylan 583 . 2 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝐻𝑥) ∈ V)
101, 9isofrlem 7092 1 ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2111  Vcvv 3409  wss 3860   Fr wfr 5483  ran crn 5528  cima 5530  wf 6335  1-1-ontowf1o 6338   Isom wiso 6340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pr 5301
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5036  df-opab 5098  df-id 5433  df-fr 5486  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-isom 6348
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator