MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isose Structured version   Visualization version   GIF version

Theorem isose 7379
Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
isose (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴𝑆 Se 𝐵))

Proof of Theorem isose
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isof1o 7359 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
3 f1ofun 6864 . . . 4 (𝐻:𝐴1-1-onto𝐵 → Fun 𝐻)
4 vex 3492 . . . . 5 𝑥 ∈ V
54funimaex 6666 . . . 4 (Fun 𝐻 → (𝐻𝑥) ∈ V)
62, 3, 53syl 18 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ∈ V)
71, 6isoselem 7377 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴𝑆 Se 𝐵))
8 isocnv 7366 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
9 isof1o 7359 . . . 4 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → 𝐻:𝐵1-1-onto𝐴)
10 f1ofun 6864 . . . 4 (𝐻:𝐵1-1-onto𝐴 → Fun 𝐻)
114funimaex 6666 . . . 4 (Fun 𝐻 → (𝐻𝑥) ∈ V)
128, 9, 10, 114syl 19 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ∈ V)
138, 12isoselem 7377 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Se 𝐵𝑅 Se 𝐴))
147, 13impbid 212 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴𝑆 Se 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Vcvv 3488   Se wse 5650  ccnv 5699  cima 5703  Fun wfun 6567  1-1-ontowf1o 6572   Isom wiso 6574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-se 5653  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator