MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isose Structured version   Visualization version   GIF version

Theorem isose 7336
Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.)
Assertion
Ref Expression
isose (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴𝑆 Se 𝐵))

Proof of Theorem isose
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
2 isof1o 7316 . . . 4 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
3 f1ofun 6832 . . . 4 (𝐻:𝐴1-1-onto𝐵 → Fun 𝐻)
4 vex 3478 . . . . 5 𝑥 ∈ V
54funimaex 6633 . . . 4 (Fun 𝐻 → (𝐻𝑥) ∈ V)
62, 3, 53syl 18 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ∈ V)
71, 6isoselem 7334 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴𝑆 Se 𝐵))
8 isocnv 7323 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
9 isof1o 7316 . . . 4 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → 𝐻:𝐵1-1-onto𝐴)
10 f1ofun 6832 . . . 4 (𝐻:𝐵1-1-onto𝐴 → Fun 𝐻)
114funimaex 6633 . . . 4 (Fun 𝐻 → (𝐻𝑥) ∈ V)
128, 9, 10, 114syl 19 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻𝑥) ∈ V)
138, 12isoselem 7334 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Se 𝐵𝑅 Se 𝐴))
147, 13impbid 211 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴𝑆 Se 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  Vcvv 3474   Se wse 5628  ccnv 5674  cima 5678  Fun wfun 6534  1-1-ontowf1o 6539   Isom wiso 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-se 5631  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator