![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isose | Structured version Visualization version GIF version |
Description: An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.) |
Ref | Expression |
---|---|
isose | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)) | |
2 | isof1o 7313 | . . . 4 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) | |
3 | f1ofun 6826 | . . . 4 ⊢ (𝐻:𝐴–1-1-onto→𝐵 → Fun 𝐻) | |
4 | vex 3470 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 4 | funimaex 6627 | . . . 4 ⊢ (Fun 𝐻 → (𝐻 “ 𝑥) ∈ V) |
6 | 2, 3, 5 | 3syl 18 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝐻 “ 𝑥) ∈ V) |
7 | 1, 6 | isoselem 7331 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴 → 𝑆 Se 𝐵)) |
8 | isocnv 7320 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) | |
9 | isof1o 7313 | . . . 4 ⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) → ◡𝐻:𝐵–1-1-onto→𝐴) | |
10 | f1ofun 6826 | . . . 4 ⊢ (◡𝐻:𝐵–1-1-onto→𝐴 → Fun ◡𝐻) | |
11 | 4 | funimaex 6627 | . . . 4 ⊢ (Fun ◡𝐻 → (◡𝐻 “ 𝑥) ∈ V) |
12 | 8, 9, 10, 11 | 4syl 19 | . . 3 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (◡𝐻 “ 𝑥) ∈ V) |
13 | 8, 12 | isoselem 7331 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Se 𝐵 → 𝑅 Se 𝐴)) |
14 | 7, 13 | impbid 211 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴 ↔ 𝑆 Se 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 Vcvv 3466 Se wse 5620 ◡ccnv 5666 “ cima 5670 Fun wfun 6528 –1-1-onto→wf1o 6533 Isom wiso 6535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-se 5623 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |