Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenval Structured version   Visualization version   GIF version

Theorem caragenval 46480
Description: The sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
caragenval (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
Distinct variable group:   𝑂,𝑎,𝑒

Proof of Theorem caragenval
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝑂 ∈ OutMeas → 𝑂 ∈ OutMeas)
2 dmexg 7905 . . . . 5 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
32uniexd 7744 . . . 4 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
43pwexd 5359 . . 3 (𝑂 ∈ OutMeas → 𝒫 dom 𝑂 ∈ V)
5 rabexg 5317 . . 3 (𝒫 dom 𝑂 ∈ V → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ∈ V)
64, 5syl 17 . 2 (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ∈ V)
7 dmeq 5894 . . . . . 6 (𝑜 = 𝑂 → dom 𝑜 = dom 𝑂)
87unieqd 4900 . . . . 5 (𝑜 = 𝑂 dom 𝑜 = dom 𝑂)
98pweqd 4597 . . . 4 (𝑜 = 𝑂 → 𝒫 dom 𝑜 = 𝒫 dom 𝑂)
109raleqdv 3309 . . . . 5 (𝑜 = 𝑂 → (∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)))
11 fveq1 6885 . . . . . . . 8 (𝑜 = 𝑂 → (𝑜‘(𝑎𝑒)) = (𝑂‘(𝑎𝑒)))
12 fveq1 6885 . . . . . . . 8 (𝑜 = 𝑂 → (𝑜‘(𝑎𝑒)) = (𝑂‘(𝑎𝑒)))
1311, 12oveq12d 7431 . . . . . . 7 (𝑜 = 𝑂 → ((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = ((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))))
14 fveq1 6885 . . . . . . 7 (𝑜 = 𝑂 → (𝑜𝑎) = (𝑂𝑎))
1513, 14eqeq12d 2750 . . . . . 6 (𝑜 = 𝑂 → (((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)))
1615ralbidv 3165 . . . . 5 (𝑜 = 𝑂 → (∀𝑎 ∈ 𝒫 dom 𝑂((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)))
1710, 16bitrd 279 . . . 4 (𝑜 = 𝑂 → (∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)))
189, 17rabeqbidv 3438 . . 3 (𝑜 = 𝑂 → {𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)} = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
19 df-caragen 46479 . . 3 CaraGen = (𝑜 ∈ OutMeas ↦ {𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)})
2018, 19fvmptg 6994 . 2 ((𝑂 ∈ OutMeas ∧ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ∈ V) → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
211, 6, 20syl2anc 584 1 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  wral 3050  {crab 3419  Vcvv 3463  cdif 3928  cin 3930  𝒫 cpw 4580   cuni 4887  dom cdm 5665  cfv 6541  (class class class)co 7413   +𝑒 cxad 13134  OutMeascome 46476  CaraGenccaragen 46478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-caragen 46479
This theorem is referenced by:  caragenel  46482  caragenss  46491  caratheodory  46515
  Copyright terms: Public domain W3C validator