Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenval Structured version   Visualization version   GIF version

Theorem caragenval 44031
Description: The sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
caragenval (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
Distinct variable group:   𝑂,𝑎,𝑒

Proof of Theorem caragenval
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝑂 ∈ OutMeas → 𝑂 ∈ OutMeas)
2 dmexg 7750 . . . . 5 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
32uniexd 7595 . . . 4 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
43pwexd 5302 . . 3 (𝑂 ∈ OutMeas → 𝒫 dom 𝑂 ∈ V)
5 rabexg 5255 . . 3 (𝒫 dom 𝑂 ∈ V → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ∈ V)
64, 5syl 17 . 2 (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ∈ V)
7 dmeq 5812 . . . . . 6 (𝑜 = 𝑂 → dom 𝑜 = dom 𝑂)
87unieqd 4853 . . . . 5 (𝑜 = 𝑂 dom 𝑜 = dom 𝑂)
98pweqd 4552 . . . 4 (𝑜 = 𝑂 → 𝒫 dom 𝑜 = 𝒫 dom 𝑂)
109raleqdv 3348 . . . . 5 (𝑜 = 𝑂 → (∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)))
11 fveq1 6773 . . . . . . . 8 (𝑜 = 𝑂 → (𝑜‘(𝑎𝑒)) = (𝑂‘(𝑎𝑒)))
12 fveq1 6773 . . . . . . . 8 (𝑜 = 𝑂 → (𝑜‘(𝑎𝑒)) = (𝑂‘(𝑎𝑒)))
1311, 12oveq12d 7293 . . . . . . 7 (𝑜 = 𝑂 → ((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = ((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))))
14 fveq1 6773 . . . . . . 7 (𝑜 = 𝑂 → (𝑜𝑎) = (𝑂𝑎))
1513, 14eqeq12d 2754 . . . . . 6 (𝑜 = 𝑂 → (((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)))
1615ralbidv 3112 . . . . 5 (𝑜 = 𝑂 → (∀𝑎 ∈ 𝒫 dom 𝑂((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)))
1710, 16bitrd 278 . . . 4 (𝑜 = 𝑂 → (∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)))
189, 17rabeqbidv 3420 . . 3 (𝑜 = 𝑂 → {𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)} = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
19 df-caragen 44030 . . 3 CaraGen = (𝑜 ∈ OutMeas ↦ {𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)})
2018, 19fvmptg 6873 . 2 ((𝑂 ∈ OutMeas ∧ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ∈ V) → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
211, 6, 20syl2anc 584 1 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  𝒫 cpw 4533   cuni 4839  dom cdm 5589  cfv 6433  (class class class)co 7275   +𝑒 cxad 12846  OutMeascome 44027  CaraGenccaragen 44029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-caragen 44030
This theorem is referenced by:  caragenel  44033  caragenss  44042  caratheodory  44066
  Copyright terms: Public domain W3C validator