Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenval Structured version   Visualization version   GIF version

Theorem caragenval 46590
Description: The sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
caragenval (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
Distinct variable group:   𝑂,𝑎,𝑒

Proof of Theorem caragenval
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 id 22 . 2 (𝑂 ∈ OutMeas → 𝑂 ∈ OutMeas)
2 dmexg 7831 . . . . 5 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
32uniexd 7675 . . . 4 (𝑂 ∈ OutMeas → dom 𝑂 ∈ V)
43pwexd 5315 . . 3 (𝑂 ∈ OutMeas → 𝒫 dom 𝑂 ∈ V)
5 rabexg 5273 . . 3 (𝒫 dom 𝑂 ∈ V → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ∈ V)
64, 5syl 17 . 2 (𝑂 ∈ OutMeas → {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ∈ V)
7 dmeq 5842 . . . . . 6 (𝑜 = 𝑂 → dom 𝑜 = dom 𝑂)
87unieqd 4869 . . . . 5 (𝑜 = 𝑂 dom 𝑜 = dom 𝑂)
98pweqd 4564 . . . 4 (𝑜 = 𝑂 → 𝒫 dom 𝑜 = 𝒫 dom 𝑂)
109raleqdv 3292 . . . . 5 (𝑜 = 𝑂 → (∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)))
11 fveq1 6821 . . . . . . . 8 (𝑜 = 𝑂 → (𝑜‘(𝑎𝑒)) = (𝑂‘(𝑎𝑒)))
12 fveq1 6821 . . . . . . . 8 (𝑜 = 𝑂 → (𝑜‘(𝑎𝑒)) = (𝑂‘(𝑎𝑒)))
1311, 12oveq12d 7364 . . . . . . 7 (𝑜 = 𝑂 → ((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = ((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))))
14 fveq1 6821 . . . . . . 7 (𝑜 = 𝑂 → (𝑜𝑎) = (𝑂𝑎))
1513, 14eqeq12d 2747 . . . . . 6 (𝑜 = 𝑂 → (((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)))
1615ralbidv 3155 . . . . 5 (𝑜 = 𝑂 → (∀𝑎 ∈ 𝒫 dom 𝑂((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)))
1710, 16bitrd 279 . . . 4 (𝑜 = 𝑂 → (∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)))
189, 17rabeqbidv 3413 . . 3 (𝑜 = 𝑂 → {𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)} = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
19 df-caragen 46589 . . 3 CaraGen = (𝑜 ∈ OutMeas ↦ {𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)})
2018, 19fvmptg 6927 . 2 ((𝑂 ∈ OutMeas ∧ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ∈ V) → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
211, 6, 20syl2anc 584 1 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  cin 3896  𝒫 cpw 4547   cuni 4856  dom cdm 5614  cfv 6481  (class class class)co 7346   +𝑒 cxad 13009  OutMeascome 46586  CaraGenccaragen 46588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-caragen 46589
This theorem is referenced by:  caragenel  46592  caragenss  46601  caratheodory  46625
  Copyright terms: Public domain W3C validator