Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0ome Structured version   Visualization version   GIF version

Theorem 0ome 44067
Description: The map that assigns 0 to every subset, is an outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
0ome.1 (𝜑𝑋𝑉)
0ome.2 𝑂 = (𝑥 ∈ 𝒫 𝑋 ↦ 0)
Assertion
Ref Expression
0ome (𝜑𝑂 ∈ OutMeas)
Distinct variable group:   𝑥,𝑋
Allowed substitution hints:   𝜑(𝑥)   𝑂(𝑥)   𝑉(𝑥)

Proof of Theorem 0ome
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋 ↦ 0) = (𝑦 ∈ 𝒫 𝑋 ↦ 0)
2 0e0iccpnf 13191 . . . . . . . . . 10 0 ∈ (0[,]+∞)
32a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝒫 𝑋 → 0 ∈ (0[,]+∞))
41, 3fmpti 6986 . . . . . . . 8 (𝑦 ∈ 𝒫 𝑋 ↦ 0):𝒫 𝑋⟶(0[,]+∞)
5 0ome.2 . . . . . . . . . . 11 𝑂 = (𝑥 ∈ 𝒫 𝑋 ↦ 0)
6 eqidd 2739 . . . . . . . . . . . 12 (𝑥 = 𝑦 → 0 = 0)
76cbvmptv 5187 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 𝑋 ↦ 0) = (𝑦 ∈ 𝒫 𝑋 ↦ 0)
85, 7eqtri 2766 . . . . . . . . . 10 𝑂 = (𝑦 ∈ 𝒫 𝑋 ↦ 0)
98feq1i 6591 . . . . . . . . 9 (𝑂:dom 𝑂⟶(0[,]+∞) ↔ (𝑦 ∈ 𝒫 𝑋 ↦ 0):dom 𝑂⟶(0[,]+∞))
108dmeqi 5813 . . . . . . . . . . 11 dom 𝑂 = dom (𝑦 ∈ 𝒫 𝑋 ↦ 0)
11 0re 10977 . . . . . . . . . . . . 13 0 ∈ ℝ
1211rgenw 3076 . . . . . . . . . . . 12 𝑦 ∈ 𝒫 𝑋0 ∈ ℝ
13 dmmptg 6145 . . . . . . . . . . . 12 (∀𝑦 ∈ 𝒫 𝑋0 ∈ ℝ → dom (𝑦 ∈ 𝒫 𝑋 ↦ 0) = 𝒫 𝑋)
1412, 13ax-mp 5 . . . . . . . . . . 11 dom (𝑦 ∈ 𝒫 𝑋 ↦ 0) = 𝒫 𝑋
1510, 14eqtri 2766 . . . . . . . . . 10 dom 𝑂 = 𝒫 𝑋
1615feq2i 6592 . . . . . . . . 9 ((𝑦 ∈ 𝒫 𝑋 ↦ 0):dom 𝑂⟶(0[,]+∞) ↔ (𝑦 ∈ 𝒫 𝑋 ↦ 0):𝒫 𝑋⟶(0[,]+∞))
179, 16bitri 274 . . . . . . . 8 (𝑂:dom 𝑂⟶(0[,]+∞) ↔ (𝑦 ∈ 𝒫 𝑋 ↦ 0):𝒫 𝑋⟶(0[,]+∞))
184, 17mpbir 230 . . . . . . 7 𝑂:dom 𝑂⟶(0[,]+∞)
19 unipw 5366 . . . . . . . . . 10 𝒫 𝑋 = 𝑋
2019pweqi 4551 . . . . . . . . 9 𝒫 𝒫 𝑋 = 𝒫 𝑋
2120eqcomi 2747 . . . . . . . 8 𝒫 𝑋 = 𝒫 𝒫 𝑋
2215eqcomi 2747 . . . . . . . . . 10 𝒫 𝑋 = dom 𝑂
2322unieqi 4852 . . . . . . . . 9 𝒫 𝑋 = dom 𝑂
2423pweqi 4551 . . . . . . . 8 𝒫 𝒫 𝑋 = 𝒫 dom 𝑂
2515, 21, 243eqtri 2770 . . . . . . 7 dom 𝑂 = 𝒫 dom 𝑂
2618, 25pm3.2i 471 . . . . . 6 (𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂)
27 0elpw 5278 . . . . . . 7 ∅ ∈ 𝒫 𝑋
28 eqidd 2739 . . . . . . . 8 (𝑦 = ∅ → 0 = 0)
2911elexi 3451 . . . . . . . 8 0 ∈ V
3028, 8, 29fvmpt 6875 . . . . . . 7 (∅ ∈ 𝒫 𝑋 → (𝑂‘∅) = 0)
3127, 30ax-mp 5 . . . . . 6 (𝑂‘∅) = 0
3226, 31pm3.2i 471 . . . . 5 ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0)
3311leidi 11509 . . . . . . . . 9 0 ≤ 0
3433a1i 11 . . . . . . . 8 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 0 ≤ 0)
35 eqidd 2739 . . . . . . . . . 10 (𝑦 = 𝑧 → 0 = 0)
36 elpwi 4542 . . . . . . . . . . . . 13 (𝑧 ∈ 𝒫 𝑦𝑧𝑦)
3736adantl 482 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧𝑦)
38 id 22 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 dom 𝑂)
3921, 24eqtr2i 2767 . . . . . . . . . . . . . . . 16 𝒫 dom 𝑂 = 𝒫 𝑋
4039a1i 11 . . . . . . . . . . . . . . 15 (𝑦 ∈ 𝒫 dom 𝑂 → 𝒫 dom 𝑂 = 𝒫 𝑋)
4138, 40eleqtrd 2841 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑋)
42 elpwi 4542 . . . . . . . . . . . . . 14 (𝑦 ∈ 𝒫 𝑋𝑦𝑋)
4341, 42syl 17 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom 𝑂𝑦𝑋)
4443adantr 481 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑦𝑋)
4537, 44sstrd 3931 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧𝑋)
46 simpr 485 . . . . . . . . . . . 12 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧 ∈ 𝒫 𝑦)
47 elpwg 4536 . . . . . . . . . . . 12 (𝑧 ∈ 𝒫 𝑦 → (𝑧 ∈ 𝒫 𝑋𝑧𝑋))
4846, 47syl 17 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑧 ∈ 𝒫 𝑋𝑧𝑋))
4945, 48mpbird 256 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 𝑧 ∈ 𝒫 𝑋)
5011a1i 11 . . . . . . . . . 10 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → 0 ∈ ℝ)
518, 35, 49, 50fvmptd3 6898 . . . . . . . . 9 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑂𝑧) = 0)
528fvmpt2 6886 . . . . . . . . . . 11 ((𝑦 ∈ 𝒫 𝑋 ∧ 0 ∈ ℝ) → (𝑂𝑦) = 0)
5341, 11, 52sylancl 586 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂𝑦) = 0)
5453adantr 481 . . . . . . . . 9 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑂𝑦) = 0)
5551, 54breq12d 5087 . . . . . . . 8 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → ((𝑂𝑧) ≤ (𝑂𝑦) ↔ 0 ≤ 0))
5634, 55mpbird 256 . . . . . . 7 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦) → (𝑂𝑧) ≤ (𝑂𝑦))
5756ralrimiva 3103 . . . . . 6 (𝑦 ∈ 𝒫 dom 𝑂 → ∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))
5857rgen 3074 . . . . 5 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)
5932, 58pm3.2i 471 . . . 4 (((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))
6033a1i 11 . . . . . . 7 (𝑦 ∈ 𝒫 dom 𝑂 → 0 ≤ 0)
6135cbvmptv 5187 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 𝑋 ↦ 0) = (𝑧 ∈ 𝒫 𝑋 ↦ 0)
628, 61eqtri 2766 . . . . . . . . . 10 𝑂 = (𝑧 ∈ 𝒫 𝑋 ↦ 0)
6362a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂𝑂 = (𝑧 ∈ 𝒫 𝑋 ↦ 0))
64 eqidd 2739 . . . . . . . . 9 ((𝑦 ∈ 𝒫 dom 𝑂𝑧 = 𝑦) → 0 = 0)
65 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 dom 𝑂)
6615pweqi 4551 . . . . . . . . . . . . . 14 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋
6766a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ 𝒫 dom 𝑂 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
6865, 67eleqtrd 2841 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝒫 𝑋)
69 elpwi 4542 . . . . . . . . . . . 12 (𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋)
7068, 69syl 17 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂𝑦 ⊆ 𝒫 𝑋)
71 sspwuni 5029 . . . . . . . . . . 11 (𝑦 ⊆ 𝒫 𝑋 𝑦𝑋)
7270, 71sylib 217 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 𝑦𝑋)
73 vuniex 7592 . . . . . . . . . . . 12 𝑦 ∈ V
7473a1i 11 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂 𝑦 ∈ V)
75 elpwg 4536 . . . . . . . . . . 11 ( 𝑦 ∈ V → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
7674, 75syl 17 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋))
7772, 76mpbird 256 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 𝑦 ∈ 𝒫 𝑋)
7811a1i 11 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 → 0 ∈ ℝ)
7963, 64, 77, 78fvmptd 6882 . . . . . . . 8 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂 𝑦) = 0)
8063reseq1d 5890 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂𝑦) = ((𝑧 ∈ 𝒫 𝑋 ↦ 0) ↾ 𝑦))
81 resmpt 5945 . . . . . . . . . . . 12 (𝑦 ⊆ 𝒫 𝑋 → ((𝑧 ∈ 𝒫 𝑋 ↦ 0) ↾ 𝑦) = (𝑧𝑦 ↦ 0))
8270, 81syl 17 . . . . . . . . . . 11 (𝑦 ∈ 𝒫 dom 𝑂 → ((𝑧 ∈ 𝒫 𝑋 ↦ 0) ↾ 𝑦) = (𝑧𝑦 ↦ 0))
8380, 82eqtrd 2778 . . . . . . . . . 10 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂𝑦) = (𝑧𝑦 ↦ 0))
8483fveq2d 6778 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 → (Σ^‘(𝑂𝑦)) = (Σ^‘(𝑧𝑦 ↦ 0)))
85 nfv 1917 . . . . . . . . . 10 𝑧 𝑦 ∈ 𝒫 dom 𝑂
8685, 65sge0z 43913 . . . . . . . . 9 (𝑦 ∈ 𝒫 dom 𝑂 → (Σ^‘(𝑧𝑦 ↦ 0)) = 0)
8784, 86eqtrd 2778 . . . . . . . 8 (𝑦 ∈ 𝒫 dom 𝑂 → (Σ^‘(𝑂𝑦)) = 0)
8879, 87breq12d 5087 . . . . . . 7 (𝑦 ∈ 𝒫 dom 𝑂 → ((𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)) ↔ 0 ≤ 0))
8960, 88mpbird 256 . . . . . 6 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))
9089a1d 25 . . . . 5 (𝑦 ∈ 𝒫 dom 𝑂 → (𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
9190rgen 3074 . . . 4 𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))
9259, 91pm3.2i 471 . . 3 ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
9392a1i 11 . 2 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
948a1i 11 . . . 4 (𝜑𝑂 = (𝑦 ∈ 𝒫 𝑋 ↦ 0))
95 0ome.1 . . . . . 6 (𝜑𝑋𝑉)
9695pwexd 5302 . . . . 5 (𝜑 → 𝒫 𝑋 ∈ V)
97 mptexg 7097 . . . . 5 (𝒫 𝑋 ∈ V → (𝑦 ∈ 𝒫 𝑋 ↦ 0) ∈ V)
9896, 97syl 17 . . . 4 (𝜑 → (𝑦 ∈ 𝒫 𝑋 ↦ 0) ∈ V)
9994, 98eqeltrd 2839 . . 3 (𝜑𝑂 ∈ V)
100 isome 44032 . . 3 (𝑂 ∈ V → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
10199, 100syl 17 . 2 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
10293, 101mpbird 256 1 (𝜑𝑂 ∈ OutMeas)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   class class class wbr 5074  cmpt 5157  dom cdm 5589  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  ωcom 7712  cdom 8731  cr 10870  0cc0 10871  +∞cpnf 11006  cle 11010  [,]cicc 13082  Σ^csumge0 43900  OutMeascome 44027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-sumge0 43901  df-ome 44028
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator