Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2a Structured version   Visualization version   GIF version

Theorem isomuspgrlem2a 45168
Description: Lemma 1 for isomuspgrlem2 45173. (Contributed by AV, 29-Nov-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
isomuspgrlem2.g 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
Assertion
Ref Expression
isomuspgrlem2a (𝐹𝑋 → ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝑒,𝐸   𝑒,𝑉   𝑒,𝑊,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑒,𝐹,𝑥   𝑒,𝑋,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑒)   𝐾(𝑒)

Proof of Theorem isomuspgrlem2a
StepHypRef Expression
1 isomuspgrlem2.g . . . . 5 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
21a1i 11 . . . 4 ((𝐹𝑋𝑒𝐸) → 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥)))
3 imaeq2 5954 . . . . 5 (𝑥 = 𝑒 → (𝐹𝑥) = (𝐹𝑒))
43adantl 481 . . . 4 (((𝐹𝑋𝑒𝐸) ∧ 𝑥 = 𝑒) → (𝐹𝑥) = (𝐹𝑒))
5 simpr 484 . . . 4 ((𝐹𝑋𝑒𝐸) → 𝑒𝐸)
6 imaexg 7736 . . . . 5 (𝐹𝑋 → (𝐹𝑒) ∈ V)
76adantr 480 . . . 4 ((𝐹𝑋𝑒𝐸) → (𝐹𝑒) ∈ V)
82, 4, 5, 7fvmptd 6864 . . 3 ((𝐹𝑋𝑒𝐸) → (𝐺𝑒) = (𝐹𝑒))
98eqcomd 2744 . 2 ((𝐹𝑋𝑒𝐸) → (𝐹𝑒) = (𝐺𝑒))
109ralrimiva 3107 1 (𝐹𝑋 → ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cmpt 5153  cima 5583  cfv 6418  Vtxcvtx 27269  Edgcedg 27320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426
This theorem is referenced by:  isomuspgrlem2c  45170  isomuspgrlem2d  45171  isomuspgrlem2  45173
  Copyright terms: Public domain W3C validator