Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomuspgrlem2a | Structured version Visualization version GIF version |
Description: Lemma 1 for isomuspgrlem2 45252. (Contributed by AV, 29-Nov-2022.) |
Ref | Expression |
---|---|
isomushgr.v | ⊢ 𝑉 = (Vtx‘𝐴) |
isomushgr.w | ⊢ 𝑊 = (Vtx‘𝐵) |
isomushgr.e | ⊢ 𝐸 = (Edg‘𝐴) |
isomushgr.k | ⊢ 𝐾 = (Edg‘𝐵) |
isomuspgrlem2.g | ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) |
Ref | Expression |
---|---|
isomuspgrlem2a | ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomuspgrlem2.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))) |
3 | imaeq2 5963 | . . . . 5 ⊢ (𝑥 = 𝑒 → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) | |
4 | 3 | adantl 482 | . . . 4 ⊢ (((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) ∧ 𝑥 = 𝑒) → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) |
5 | simpr 485 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
6 | imaexg 7754 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → (𝐹 “ 𝑒) ∈ V) | |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) ∈ V) |
8 | 2, 4, 5, 7 | fvmptd 6877 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐺‘𝑒) = (𝐹 “ 𝑒)) |
9 | 8 | eqcomd 2746 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
10 | 9 | ralrimiva 3110 | 1 ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∀wral 3066 Vcvv 3431 ↦ cmpt 5162 “ cima 5592 ‘cfv 6431 Vtxcvtx 27362 Edgcedg 27413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fv 6439 |
This theorem is referenced by: isomuspgrlem2c 45249 isomuspgrlem2d 45250 isomuspgrlem2 45252 |
Copyright terms: Public domain | W3C validator |