Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2a Structured version   Visualization version   GIF version

Theorem isomuspgrlem2a 46496
Description: Lemma 1 for isomuspgrlem2 46501. (Contributed by AV, 29-Nov-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
isomuspgrlem2.g 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
Assertion
Ref Expression
isomuspgrlem2a (𝐹𝑋 → ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝑒,𝐸   𝑒,𝑉   𝑒,𝑊,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑒,𝐹,𝑥   𝑒,𝑋,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑒)   𝐾(𝑒)

Proof of Theorem isomuspgrlem2a
StepHypRef Expression
1 isomuspgrlem2.g . . . . 5 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
21a1i 11 . . . 4 ((𝐹𝑋𝑒𝐸) → 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥)))
3 imaeq2 6056 . . . . 5 (𝑥 = 𝑒 → (𝐹𝑥) = (𝐹𝑒))
43adantl 483 . . . 4 (((𝐹𝑋𝑒𝐸) ∧ 𝑥 = 𝑒) → (𝐹𝑥) = (𝐹𝑒))
5 simpr 486 . . . 4 ((𝐹𝑋𝑒𝐸) → 𝑒𝐸)
6 imaexg 7906 . . . . 5 (𝐹𝑋 → (𝐹𝑒) ∈ V)
76adantr 482 . . . 4 ((𝐹𝑋𝑒𝐸) → (𝐹𝑒) ∈ V)
82, 4, 5, 7fvmptd 7006 . . 3 ((𝐹𝑋𝑒𝐸) → (𝐺𝑒) = (𝐹𝑒))
98eqcomd 2739 . 2 ((𝐹𝑋𝑒𝐸) → (𝐹𝑒) = (𝐺𝑒))
109ralrimiva 3147 1 (𝐹𝑋 → ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  Vcvv 3475  cmpt 5232  cima 5680  cfv 6544  Vtxcvtx 28256  Edgcedg 28307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552
This theorem is referenced by:  isomuspgrlem2c  46498  isomuspgrlem2d  46499  isomuspgrlem2  46501
  Copyright terms: Public domain W3C validator