Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomuspgrlem2a | Structured version Visualization version GIF version |
Description: Lemma 1 for isomuspgrlem2 45173. (Contributed by AV, 29-Nov-2022.) |
Ref | Expression |
---|---|
isomushgr.v | ⊢ 𝑉 = (Vtx‘𝐴) |
isomushgr.w | ⊢ 𝑊 = (Vtx‘𝐵) |
isomushgr.e | ⊢ 𝐸 = (Edg‘𝐴) |
isomushgr.k | ⊢ 𝐾 = (Edg‘𝐵) |
isomuspgrlem2.g | ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) |
Ref | Expression |
---|---|
isomuspgrlem2a | ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomuspgrlem2.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))) |
3 | imaeq2 5954 | . . . . 5 ⊢ (𝑥 = 𝑒 → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) | |
4 | 3 | adantl 481 | . . . 4 ⊢ (((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) ∧ 𝑥 = 𝑒) → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) |
5 | simpr 484 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
6 | imaexg 7736 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → (𝐹 “ 𝑒) ∈ V) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) ∈ V) |
8 | 2, 4, 5, 7 | fvmptd 6864 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐺‘𝑒) = (𝐹 “ 𝑒)) |
9 | 8 | eqcomd 2744 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
10 | 9 | ralrimiva 3107 | 1 ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ↦ cmpt 5153 “ cima 5583 ‘cfv 6418 Vtxcvtx 27269 Edgcedg 27320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 |
This theorem is referenced by: isomuspgrlem2c 45170 isomuspgrlem2d 45171 isomuspgrlem2 45173 |
Copyright terms: Public domain | W3C validator |