Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2a Structured version   Visualization version   GIF version

Theorem isomuspgrlem2a 46106
Description: Lemma 1 for isomuspgrlem2 46111. (Contributed by AV, 29-Nov-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
isomuspgrlem2.g 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
Assertion
Ref Expression
isomuspgrlem2a (𝐹𝑋 → ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒))
Distinct variable groups:   𝐴,𝑒   𝐵,𝑒   𝑒,𝐸   𝑒,𝑉   𝑒,𝑊,𝑥   𝑥,𝐴   𝑥,𝐵   𝑥,𝐸   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊   𝑒,𝐹,𝑥   𝑒,𝑋,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑒)   𝐾(𝑒)

Proof of Theorem isomuspgrlem2a
StepHypRef Expression
1 isomuspgrlem2.g . . . . 5 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥))
21a1i 11 . . . 4 ((𝐹𝑋𝑒𝐸) → 𝐺 = (𝑥𝐸 ↦ (𝐹𝑥)))
3 imaeq2 6010 . . . . 5 (𝑥 = 𝑒 → (𝐹𝑥) = (𝐹𝑒))
43adantl 483 . . . 4 (((𝐹𝑋𝑒𝐸) ∧ 𝑥 = 𝑒) → (𝐹𝑥) = (𝐹𝑒))
5 simpr 486 . . . 4 ((𝐹𝑋𝑒𝐸) → 𝑒𝐸)
6 imaexg 7853 . . . . 5 (𝐹𝑋 → (𝐹𝑒) ∈ V)
76adantr 482 . . . 4 ((𝐹𝑋𝑒𝐸) → (𝐹𝑒) ∈ V)
82, 4, 5, 7fvmptd 6956 . . 3 ((𝐹𝑋𝑒𝐸) → (𝐺𝑒) = (𝐹𝑒))
98eqcomd 2739 . 2 ((𝐹𝑋𝑒𝐸) → (𝐹𝑒) = (𝐺𝑒))
109ralrimiva 3140 1 (𝐹𝑋 → ∀𝑒𝐸 (𝐹𝑒) = (𝐺𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3061  Vcvv 3444  cmpt 5189  cima 5637  cfv 6497  Vtxcvtx 27989  Edgcedg 28040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fv 6505
This theorem is referenced by:  isomuspgrlem2c  46108  isomuspgrlem2d  46109  isomuspgrlem2  46111
  Copyright terms: Public domain W3C validator