Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomuspgrlem2a | Structured version Visualization version GIF version |
Description: Lemma 1 for isomuspgrlem2 45285. (Contributed by AV, 29-Nov-2022.) |
Ref | Expression |
---|---|
isomushgr.v | ⊢ 𝑉 = (Vtx‘𝐴) |
isomushgr.w | ⊢ 𝑊 = (Vtx‘𝐵) |
isomushgr.e | ⊢ 𝐸 = (Edg‘𝐴) |
isomushgr.k | ⊢ 𝐾 = (Edg‘𝐵) |
isomuspgrlem2.g | ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) |
Ref | Expression |
---|---|
isomuspgrlem2a | ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomuspgrlem2.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))) |
3 | imaeq2 5965 | . . . . 5 ⊢ (𝑥 = 𝑒 → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) | |
4 | 3 | adantl 482 | . . . 4 ⊢ (((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) ∧ 𝑥 = 𝑒) → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) |
5 | simpr 485 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
6 | imaexg 7762 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → (𝐹 “ 𝑒) ∈ V) | |
7 | 6 | adantr 481 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) ∈ V) |
8 | 2, 4, 5, 7 | fvmptd 6882 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐺‘𝑒) = (𝐹 “ 𝑒)) |
9 | 8 | eqcomd 2744 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
10 | 9 | ralrimiva 3103 | 1 ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ↦ cmpt 5157 “ cima 5592 ‘cfv 6433 Vtxcvtx 27366 Edgcedg 27417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 |
This theorem is referenced by: isomuspgrlem2c 45282 isomuspgrlem2d 45283 isomuspgrlem2 45285 |
Copyright terms: Public domain | W3C validator |