![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomuspgrlem2a | Structured version Visualization version GIF version |
Description: Lemma 1 for isomuspgrlem2 46501. (Contributed by AV, 29-Nov-2022.) |
Ref | Expression |
---|---|
isomushgr.v | ⊢ 𝑉 = (Vtx‘𝐴) |
isomushgr.w | ⊢ 𝑊 = (Vtx‘𝐵) |
isomushgr.e | ⊢ 𝐸 = (Edg‘𝐴) |
isomushgr.k | ⊢ 𝐾 = (Edg‘𝐵) |
isomuspgrlem2.g | ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) |
Ref | Expression |
---|---|
isomuspgrlem2a | ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomuspgrlem2.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))) |
3 | imaeq2 6056 | . . . . 5 ⊢ (𝑥 = 𝑒 → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) | |
4 | 3 | adantl 483 | . . . 4 ⊢ (((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) ∧ 𝑥 = 𝑒) → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) |
5 | simpr 486 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
6 | imaexg 7906 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → (𝐹 “ 𝑒) ∈ V) | |
7 | 6 | adantr 482 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) ∈ V) |
8 | 2, 4, 5, 7 | fvmptd 7006 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐺‘𝑒) = (𝐹 “ 𝑒)) |
9 | 8 | eqcomd 2739 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
10 | 9 | ralrimiva 3147 | 1 ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ↦ cmpt 5232 “ cima 5680 ‘cfv 6544 Vtxcvtx 28256 Edgcedg 28307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 |
This theorem is referenced by: isomuspgrlem2c 46498 isomuspgrlem2d 46499 isomuspgrlem2 46501 |
Copyright terms: Public domain | W3C validator |