![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomuspgrlem2a | Structured version Visualization version GIF version |
Description: Lemma 1 for isomuspgrlem2 42739. (Contributed by AV, 29-Nov-2022.) |
Ref | Expression |
---|---|
isomushgr.v | ⊢ 𝑉 = (Vtx‘𝐴) |
isomushgr.w | ⊢ 𝑊 = (Vtx‘𝐵) |
isomushgr.e | ⊢ 𝐸 = (Edg‘𝐴) |
isomushgr.k | ⊢ 𝐾 = (Edg‘𝐵) |
isomuspgrlem2.g | ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) |
Ref | Expression |
---|---|
isomuspgrlem2a | ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomuspgrlem2.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → 𝐺 = (𝑥 ∈ 𝐸 ↦ (𝐹 “ 𝑥))) |
3 | imaeq2 5716 | . . . . 5 ⊢ (𝑥 = 𝑒 → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) | |
4 | 3 | adantl 475 | . . . 4 ⊢ (((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) ∧ 𝑥 = 𝑒) → (𝐹 “ 𝑥) = (𝐹 “ 𝑒)) |
5 | simpr 479 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ 𝐸) | |
6 | imaexg 7382 | . . . . 5 ⊢ (𝐹 ∈ 𝑋 → (𝐹 “ 𝑒) ∈ V) | |
7 | 6 | adantr 474 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) ∈ V) |
8 | 2, 4, 5, 7 | fvmptd 6548 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐺‘𝑒) = (𝐹 “ 𝑒)) |
9 | 8 | eqcomd 2783 | . 2 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑒 ∈ 𝐸) → (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
10 | 9 | ralrimiva 3147 | 1 ⊢ (𝐹 ∈ 𝑋 → ∀𝑒 ∈ 𝐸 (𝐹 “ 𝑒) = (𝐺‘𝑒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2106 ∀wral 3089 Vcvv 3397 ↦ cmpt 4965 “ cima 5358 ‘cfv 6135 Vtxcvtx 26344 Edgcedg 26395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fv 6143 |
This theorem is referenced by: isomuspgrlem2c 42736 isomuspgrlem2d 42737 isomuspgrlem2 42739 |
Copyright terms: Public domain | W3C validator |