Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2 Structured version   Visualization version   GIF version

Theorem isomuspgrlem2 45285
Description: Lemma 2 for isomuspgr 45286. (Contributed by AV, 1-Dec-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
Assertion
Ref Expression
isomuspgrlem2 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
Distinct variable groups:   𝐴,𝑒,𝑓,𝑔   𝐵,𝑒,𝑓,𝑔   𝑒,𝐸,𝑔   𝑔,𝐾   𝑒,𝑉,𝑔   𝑒,𝑊,𝑔   𝑎,𝑏,𝑔,𝑓   𝐸,𝑎,𝑏   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐸(𝑓)   𝐾(𝑒,𝑓)   𝑉(𝑓)   𝑊(𝑓,𝑎,𝑏)

Proof of Theorem isomuspgrlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isomushgr.e . . . . 5 𝐸 = (Edg‘𝐴)
21fvexi 6788 . . . 4 𝐸 ∈ V
32mptex 7099 . . 3 (𝑥𝐸 ↦ (𝑓𝑥)) ∈ V
4 isomushgr.v . . . . 5 𝑉 = (Vtx‘𝐴)
5 isomushgr.w . . . . 5 𝑊 = (Vtx‘𝐵)
6 isomushgr.k . . . . 5 𝐾 = (Edg‘𝐵)
7 eqid 2738 . . . . 5 (𝑥𝐸 ↦ (𝑓𝑥)) = (𝑥𝐸 ↦ (𝑓𝑥))
8 simplll 772 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝐴 ∈ USPGraph)
9 simplr 766 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝑓:𝑉1-1-onto𝑊)
10 simpr 485 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
11 vex 3436 . . . . . 6 𝑓 ∈ V
1211a1i 11 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝑓 ∈ V)
13 simpllr 773 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝐵 ∈ USPGraph)
144, 5, 1, 6, 7, 8, 9, 10, 12, 13isomuspgrlem2e 45284 . . . 4 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → (𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾)
154, 5, 1, 6, 7isomuspgrlem2a 45280 . . . . 5 (𝑓 ∈ V → ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))
1611, 15mp1i 13 . . . 4 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))
1714, 16jca 512 . . 3 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ((𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)))
18 f1oeq1 6704 . . . . 5 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → (𝑔:𝐸1-1-onto𝐾 ↔ (𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾))
19 fveq1 6773 . . . . . . 7 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → (𝑔𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))
2019eqeq2d 2749 . . . . . 6 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)))
2120ralbidv 3112 . . . . 5 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → (∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒) ↔ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)))
2218, 21anbi12d 631 . . . 4 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → ((𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ↔ ((𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))))
2322spcegv 3536 . . 3 ((𝑥𝐸 ↦ (𝑓𝑥)) ∈ V → (((𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
243, 17, 23mpsyl 68 . 2 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)))
2524ex 413 1 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  Vcvv 3432  {cpr 4563  cmpt 5157  cima 5592  1-1-ontowf1o 6432  cfv 6433  Vtxcvtx 27366  Edgcedg 27417  USPGraphcuspgr 27518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-uhgr 27428  df-upgr 27452  df-uspgr 27520
This theorem is referenced by:  isomuspgr  45286
  Copyright terms: Public domain W3C validator