Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2 Structured version   Visualization version   GIF version

Theorem isomuspgrlem2 44351
Description: Lemma 2 for isomuspgr 44352. (Contributed by AV, 1-Dec-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
Assertion
Ref Expression
isomuspgrlem2 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
Distinct variable groups:   𝐴,𝑒,𝑓,𝑔   𝐵,𝑒,𝑓,𝑔   𝑒,𝐸,𝑔   𝑔,𝐾   𝑒,𝑉,𝑔   𝑒,𝑊,𝑔   𝑎,𝑏,𝑔,𝑓   𝐸,𝑎,𝑏   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐸(𝑓)   𝐾(𝑒,𝑓)   𝑉(𝑓)   𝑊(𝑓,𝑎,𝑏)

Proof of Theorem isomuspgrlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isomushgr.e . . . . 5 𝐸 = (Edg‘𝐴)
21fvexi 6659 . . . 4 𝐸 ∈ V
32mptex 6963 . . 3 (𝑥𝐸 ↦ (𝑓𝑥)) ∈ V
4 isomushgr.v . . . . 5 𝑉 = (Vtx‘𝐴)
5 isomushgr.w . . . . 5 𝑊 = (Vtx‘𝐵)
6 isomushgr.k . . . . 5 𝐾 = (Edg‘𝐵)
7 eqid 2798 . . . . 5 (𝑥𝐸 ↦ (𝑓𝑥)) = (𝑥𝐸 ↦ (𝑓𝑥))
8 simplll 774 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝐴 ∈ USPGraph)
9 simplr 768 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝑓:𝑉1-1-onto𝑊)
10 simpr 488 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
11 vex 3444 . . . . . 6 𝑓 ∈ V
1211a1i 11 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝑓 ∈ V)
13 simpllr 775 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝐵 ∈ USPGraph)
144, 5, 1, 6, 7, 8, 9, 10, 12, 13isomuspgrlem2e 44350 . . . 4 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → (𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾)
154, 5, 1, 6, 7isomuspgrlem2a 44346 . . . . 5 (𝑓 ∈ V → ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))
1611, 15mp1i 13 . . . 4 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))
1714, 16jca 515 . . 3 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ((𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)))
18 f1oeq1 6579 . . . . 5 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → (𝑔:𝐸1-1-onto𝐾 ↔ (𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾))
19 fveq1 6644 . . . . . . 7 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → (𝑔𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))
2019eqeq2d 2809 . . . . . 6 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)))
2120ralbidv 3162 . . . . 5 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → (∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒) ↔ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)))
2218, 21anbi12d 633 . . . 4 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → ((𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ↔ ((𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))))
2322spcegv 3545 . . 3 ((𝑥𝐸 ↦ (𝑓𝑥)) ∈ V → (((𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
243, 17, 23mpsyl 68 . 2 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)))
2524ex 416 1 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  Vcvv 3441  {cpr 4527  cmpt 5110  cima 5522  1-1-ontowf1o 6323  cfv 6324  Vtxcvtx 26789  Edgcedg 26840  USPGraphcuspgr 26941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-edg 26841  df-uhgr 26851  df-upgr 26875  df-uspgr 26943
This theorem is referenced by:  isomuspgr  44352
  Copyright terms: Public domain W3C validator