Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomuspgrlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for isomuspgr 45645. (Contributed by AV, 1-Dec-2022.) |
Ref | Expression |
---|---|
isomushgr.v | ⊢ 𝑉 = (Vtx‘𝐴) |
isomushgr.w | ⊢ 𝑊 = (Vtx‘𝐵) |
isomushgr.e | ⊢ 𝐸 = (Edg‘𝐴) |
isomushgr.k | ⊢ 𝐾 = (Edg‘𝐵) |
Ref | Expression |
---|---|
isomuspgrlem2 | ⊢ (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomushgr.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐴) | |
2 | 1 | fvexi 6839 | . . . 4 ⊢ 𝐸 ∈ V |
3 | 2 | mptex 7155 | . . 3 ⊢ (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) ∈ V |
4 | isomushgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐴) | |
5 | isomushgr.w | . . . . 5 ⊢ 𝑊 = (Vtx‘𝐵) | |
6 | isomushgr.k | . . . . 5 ⊢ 𝐾 = (Edg‘𝐵) | |
7 | eqid 2736 | . . . . 5 ⊢ (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) | |
8 | simplll 772 | . . . . 5 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → 𝐴 ∈ USPGraph) | |
9 | simplr 766 | . . . . 5 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → 𝑓:𝑉–1-1-onto→𝑊) | |
10 | simpr 485 | . . . . 5 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) | |
11 | vex 3445 | . . . . . 6 ⊢ 𝑓 ∈ V | |
12 | 11 | a1i 11 | . . . . 5 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → 𝑓 ∈ V) |
13 | simpllr 773 | . . . . 5 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → 𝐵 ∈ USPGraph) | |
14 | 4, 5, 1, 6, 7, 8, 9, 10, 12, 13 | isomuspgrlem2e 45643 | . . . 4 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)):𝐸–1-1-onto→𝐾) |
15 | 4, 5, 1, 6, 7 | isomuspgrlem2a 45639 | . . . . 5 ⊢ (𝑓 ∈ V → ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒)) |
16 | 11, 15 | mp1i 13 | . . . 4 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒)) |
17 | 14, 16 | jca 512 | . . 3 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)):𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒))) |
18 | f1oeq1 6755 | . . . . 5 ⊢ (𝑔 = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) → (𝑔:𝐸–1-1-onto→𝐾 ↔ (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)):𝐸–1-1-onto→𝐾)) | |
19 | fveq1 6824 | . . . . . . 7 ⊢ (𝑔 = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) → (𝑔‘𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒)) | |
20 | 19 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑔 = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒))) |
21 | 20 | ralbidv 3170 | . . . . 5 ⊢ (𝑔 = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) → (∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒))) |
22 | 18, 21 | anbi12d 631 | . . . 4 ⊢ (𝑔 = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) → ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ↔ ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)):𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒)))) |
23 | 22 | spcegv 3545 | . . 3 ⊢ ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) ∈ V → (((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)):𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒)) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
24 | 3, 17, 23 | mpsyl 68 | . 2 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) |
25 | 24 | ex 413 | 1 ⊢ (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∀wral 3061 Vcvv 3441 {cpr 4575 ↦ cmpt 5175 “ cima 5623 –1-1-onto→wf1o 6478 ‘cfv 6479 Vtxcvtx 27655 Edgcedg 27706 USPGraphcuspgr 27807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-oadd 8371 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-fz 13341 df-hash 14146 df-edg 27707 df-uhgr 27717 df-upgr 27741 df-uspgr 27809 |
This theorem is referenced by: isomuspgr 45645 |
Copyright terms: Public domain | W3C validator |