![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isomuspgrlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for isomuspgr 46112. (Contributed by AV, 1-Dec-2022.) |
Ref | Expression |
---|---|
isomushgr.v | ⊢ 𝑉 = (Vtx‘𝐴) |
isomushgr.w | ⊢ 𝑊 = (Vtx‘𝐵) |
isomushgr.e | ⊢ 𝐸 = (Edg‘𝐴) |
isomushgr.k | ⊢ 𝐾 = (Edg‘𝐵) |
Ref | Expression |
---|---|
isomuspgrlem2 | ⊢ (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomushgr.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐴) | |
2 | 1 | fvexi 6857 | . . . 4 ⊢ 𝐸 ∈ V |
3 | 2 | mptex 7174 | . . 3 ⊢ (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) ∈ V |
4 | isomushgr.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐴) | |
5 | isomushgr.w | . . . . 5 ⊢ 𝑊 = (Vtx‘𝐵) | |
6 | isomushgr.k | . . . . 5 ⊢ 𝐾 = (Edg‘𝐵) | |
7 | eqid 2733 | . . . . 5 ⊢ (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) | |
8 | simplll 774 | . . . . 5 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → 𝐴 ∈ USPGraph) | |
9 | simplr 768 | . . . . 5 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → 𝑓:𝑉–1-1-onto→𝑊) | |
10 | simpr 486 | . . . . 5 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) | |
11 | vex 3448 | . . . . . 6 ⊢ 𝑓 ∈ V | |
12 | 11 | a1i 11 | . . . . 5 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → 𝑓 ∈ V) |
13 | simpllr 775 | . . . . 5 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → 𝐵 ∈ USPGraph) | |
14 | 4, 5, 1, 6, 7, 8, 9, 10, 12, 13 | isomuspgrlem2e 46110 | . . . 4 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)):𝐸–1-1-onto→𝐾) |
15 | 4, 5, 1, 6, 7 | isomuspgrlem2a 46106 | . . . . 5 ⊢ (𝑓 ∈ V → ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒)) |
16 | 11, 15 | mp1i 13 | . . . 4 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒)) |
17 | 14, 16 | jca 513 | . . 3 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)):𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒))) |
18 | f1oeq1 6773 | . . . . 5 ⊢ (𝑔 = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) → (𝑔:𝐸–1-1-onto→𝐾 ↔ (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)):𝐸–1-1-onto→𝐾)) | |
19 | fveq1 6842 | . . . . . . 7 ⊢ (𝑔 = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) → (𝑔‘𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒)) | |
20 | 19 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑔 = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) → ((𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒))) |
21 | 20 | ralbidv 3171 | . . . . 5 ⊢ (𝑔 = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) → (∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒) ↔ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒))) |
22 | 18, 21 | anbi12d 632 | . . . 4 ⊢ (𝑔 = (𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) → ((𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)) ↔ ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)):𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒)))) |
23 | 22 | spcegv 3555 | . . 3 ⊢ ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)) ∈ V → (((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥)):𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = ((𝑥 ∈ 𝐸 ↦ (𝑓 “ 𝑥))‘𝑒)) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
24 | 3, 17, 23 | mpsyl 68 | . 2 ⊢ ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) ∧ ∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾)) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒))) |
25 | 24 | ex 414 | 1 ⊢ (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉–1-1-onto→𝑊) → (∀𝑎 ∈ 𝑉 ∀𝑏 ∈ 𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓‘𝑎), (𝑓‘𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸–1-1-onto→𝐾 ∧ ∀𝑒 ∈ 𝐸 (𝑓 “ 𝑒) = (𝑔‘𝑒)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∀wral 3061 Vcvv 3444 {cpr 4589 ↦ cmpt 5189 “ cima 5637 –1-1-onto→wf1o 6496 ‘cfv 6497 Vtxcvtx 27989 Edgcedg 28040 USPGraphcuspgr 28141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-2o 8414 df-oadd 8417 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-dju 9842 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-n0 12419 df-xnn0 12491 df-z 12505 df-uz 12769 df-fz 13431 df-hash 14237 df-edg 28041 df-uhgr 28051 df-upgr 28075 df-uspgr 28143 |
This theorem is referenced by: isomuspgr 46112 |
Copyright terms: Public domain | W3C validator |