Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomuspgrlem2 Structured version   Visualization version   GIF version

Theorem isomuspgrlem2 45644
Description: Lemma 2 for isomuspgr 45645. (Contributed by AV, 1-Dec-2022.)
Hypotheses
Ref Expression
isomushgr.v 𝑉 = (Vtx‘𝐴)
isomushgr.w 𝑊 = (Vtx‘𝐵)
isomushgr.e 𝐸 = (Edg‘𝐴)
isomushgr.k 𝐾 = (Edg‘𝐵)
Assertion
Ref Expression
isomuspgrlem2 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
Distinct variable groups:   𝐴,𝑒,𝑓,𝑔   𝐵,𝑒,𝑓,𝑔   𝑒,𝐸,𝑔   𝑔,𝐾   𝑒,𝑉,𝑔   𝑒,𝑊,𝑔   𝑎,𝑏,𝑔,𝑓   𝐸,𝑎,𝑏   𝐾,𝑎,𝑏   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎,𝑏)   𝐵(𝑎,𝑏)   𝐸(𝑓)   𝐾(𝑒,𝑓)   𝑉(𝑓)   𝑊(𝑓,𝑎,𝑏)

Proof of Theorem isomuspgrlem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 isomushgr.e . . . . 5 𝐸 = (Edg‘𝐴)
21fvexi 6839 . . . 4 𝐸 ∈ V
32mptex 7155 . . 3 (𝑥𝐸 ↦ (𝑓𝑥)) ∈ V
4 isomushgr.v . . . . 5 𝑉 = (Vtx‘𝐴)
5 isomushgr.w . . . . 5 𝑊 = (Vtx‘𝐵)
6 isomushgr.k . . . . 5 𝐾 = (Edg‘𝐵)
7 eqid 2736 . . . . 5 (𝑥𝐸 ↦ (𝑓𝑥)) = (𝑥𝐸 ↦ (𝑓𝑥))
8 simplll 772 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝐴 ∈ USPGraph)
9 simplr 766 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝑓:𝑉1-1-onto𝑊)
10 simpr 485 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾))
11 vex 3445 . . . . . 6 𝑓 ∈ V
1211a1i 11 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝑓 ∈ V)
13 simpllr 773 . . . . 5 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → 𝐵 ∈ USPGraph)
144, 5, 1, 6, 7, 8, 9, 10, 12, 13isomuspgrlem2e 45643 . . . 4 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → (𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾)
154, 5, 1, 6, 7isomuspgrlem2a 45639 . . . . 5 (𝑓 ∈ V → ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))
1611, 15mp1i 13 . . . 4 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))
1714, 16jca 512 . . 3 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ((𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)))
18 f1oeq1 6755 . . . . 5 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → (𝑔:𝐸1-1-onto𝐾 ↔ (𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾))
19 fveq1 6824 . . . . . . 7 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → (𝑔𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))
2019eqeq2d 2747 . . . . . 6 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → ((𝑓𝑒) = (𝑔𝑒) ↔ (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)))
2120ralbidv 3170 . . . . 5 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → (∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒) ↔ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)))
2218, 21anbi12d 631 . . . 4 (𝑔 = (𝑥𝐸 ↦ (𝑓𝑥)) → ((𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)) ↔ ((𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒))))
2322spcegv 3545 . . 3 ((𝑥𝐸 ↦ (𝑓𝑥)) ∈ V → (((𝑥𝐸 ↦ (𝑓𝑥)):𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = ((𝑥𝐸 ↦ (𝑓𝑥))‘𝑒)) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
243, 17, 23mpsyl 68 . 2 ((((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) ∧ ∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾)) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒)))
2524ex 413 1 (((𝐴 ∈ USPGraph ∧ 𝐵 ∈ USPGraph) ∧ 𝑓:𝑉1-1-onto𝑊) → (∀𝑎𝑉𝑏𝑉 ({𝑎, 𝑏} ∈ 𝐸 ↔ {(𝑓𝑎), (𝑓𝑏)} ∈ 𝐾) → ∃𝑔(𝑔:𝐸1-1-onto𝐾 ∧ ∀𝑒𝐸 (𝑓𝑒) = (𝑔𝑒))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wex 1780  wcel 2105  wral 3061  Vcvv 3441  {cpr 4575  cmpt 5175  cima 5623  1-1-ontowf1o 6478  cfv 6479  Vtxcvtx 27655  Edgcedg 27706  USPGraphcuspgr 27807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-oadd 8371  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-n0 12335  df-xnn0 12407  df-z 12421  df-uz 12684  df-fz 13341  df-hash 14146  df-edg 27707  df-uhgr 27717  df-upgr 27741  df-uspgr 27809
This theorem is referenced by:  isomuspgr  45645
  Copyright terms: Public domain W3C validator