Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  watvalN Structured version   Visualization version   GIF version

Theorem watvalN 39954
Description: Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
watomfval.a 𝐴 = (Atoms‘𝐾)
watomfval.p 𝑃 = (⊥𝑃𝐾)
watomfval.w 𝑊 = (WAtoms‘𝐾)
Assertion
Ref Expression
watvalN ((𝐾𝐵𝐷𝐴) → (𝑊𝐷) = (𝐴 ∖ ((⊥𝑃𝐾)‘{𝐷})))

Proof of Theorem watvalN
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 watomfval.a . . . 4 𝐴 = (Atoms‘𝐾)
2 watomfval.p . . . 4 𝑃 = (⊥𝑃𝐾)
3 watomfval.w . . . 4 𝑊 = (WAtoms‘𝐾)
41, 2, 3watfvalN 39953 . . 3 (𝐾𝐵𝑊 = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))))
54fveq1d 6888 . 2 (𝐾𝐵 → (𝑊𝐷) = ((𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑})))‘𝐷))
6 sneq 4616 . . . . 5 (𝑑 = 𝐷 → {𝑑} = {𝐷})
76fveq2d 6890 . . . 4 (𝑑 = 𝐷 → ((⊥𝑃𝐾)‘{𝑑}) = ((⊥𝑃𝐾)‘{𝐷}))
87difeq2d 4106 . . 3 (𝑑 = 𝐷 → (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃𝐾)‘{𝐷})))
9 eqid 2734 . . 3 (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑}))) = (𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑})))
101fvexi 6900 . . . 4 𝐴 ∈ V
1110difexi 5310 . . 3 (𝐴 ∖ ((⊥𝑃𝐾)‘{𝐷})) ∈ V
128, 9, 11fvmpt 6996 . 2 (𝐷𝐴 → ((𝑑𝐴 ↦ (𝐴 ∖ ((⊥𝑃𝐾)‘{𝑑})))‘𝐷) = (𝐴 ∖ ((⊥𝑃𝐾)‘{𝐷})))
135, 12sylan9eq 2789 1 ((𝐾𝐵𝐷𝐴) → (𝑊𝐷) = (𝐴 ∖ ((⊥𝑃𝐾)‘{𝐷})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cdif 3928  {csn 4606  cmpt 5205  cfv 6541  Atomscatm 39223  𝑃cpolN 39863  WAtomscwpointsN 39947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-watsN 39951
This theorem is referenced by:  iswatN  39955
  Copyright terms: Public domain W3C validator