![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > watvalN | Structured version Visualization version GIF version |
Description: Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
watomfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
watomfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
watomfval.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
Ref | Expression |
---|---|
watvalN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | watomfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | watomfval.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
3 | watomfval.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
4 | 1, 2, 3 | watfvalN 39974 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
5 | 4 | fveq1d 6908 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝑊‘𝐷) = ((𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))‘𝐷)) |
6 | sneq 4640 | . . . . 5 ⊢ (𝑑 = 𝐷 → {𝑑} = {𝐷}) | |
7 | 6 | fveq2d 6910 | . . . 4 ⊢ (𝑑 = 𝐷 → ((⊥𝑃‘𝐾)‘{𝑑}) = ((⊥𝑃‘𝐾)‘{𝐷})) |
8 | 7 | difeq2d 4135 | . . 3 ⊢ (𝑑 = 𝐷 → (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
9 | eqid 2734 | . . 3 ⊢ (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) | |
10 | 1 | fvexi 6920 | . . . 4 ⊢ 𝐴 ∈ V |
11 | 10 | difexi 5335 | . . 3 ⊢ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})) ∈ V |
12 | 8, 9, 11 | fvmpt 7015 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
13 | 5, 12 | sylan9eq 2794 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∖ cdif 3959 {csn 4630 ↦ cmpt 5230 ‘cfv 6562 Atomscatm 39244 ⊥𝑃cpolN 39884 WAtomscwpointsN 39968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-watsN 39972 |
This theorem is referenced by: iswatN 39976 |
Copyright terms: Public domain | W3C validator |