![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > watvalN | Structured version Visualization version GIF version |
Description: Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
watomfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
watomfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
watomfval.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
Ref | Expression |
---|---|
watvalN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | watomfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | watomfval.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
3 | watomfval.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
4 | 1, 2, 3 | watfvalN 39949 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
5 | 4 | fveq1d 6922 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝑊‘𝐷) = ((𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))‘𝐷)) |
6 | sneq 4658 | . . . . 5 ⊢ (𝑑 = 𝐷 → {𝑑} = {𝐷}) | |
7 | 6 | fveq2d 6924 | . . . 4 ⊢ (𝑑 = 𝐷 → ((⊥𝑃‘𝐾)‘{𝑑}) = ((⊥𝑃‘𝐾)‘{𝐷})) |
8 | 7 | difeq2d 4149 | . . 3 ⊢ (𝑑 = 𝐷 → (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
9 | eqid 2740 | . . 3 ⊢ (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) | |
10 | 1 | fvexi 6934 | . . . 4 ⊢ 𝐴 ∈ V |
11 | 10 | difexi 5348 | . . 3 ⊢ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})) ∈ V |
12 | 8, 9, 11 | fvmpt 7029 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
13 | 5, 12 | sylan9eq 2800 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 {csn 4648 ↦ cmpt 5249 ‘cfv 6573 Atomscatm 39219 ⊥𝑃cpolN 39859 WAtomscwpointsN 39943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-watsN 39947 |
This theorem is referenced by: iswatN 39951 |
Copyright terms: Public domain | W3C validator |