| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > watvalN | Structured version Visualization version GIF version | ||
| Description: Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| watomfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| watomfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| watomfval.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
| Ref | Expression |
|---|---|
| watvalN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | watomfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | watomfval.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 3 | watomfval.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
| 4 | 1, 2, 3 | watfvalN 39993 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| 5 | 4 | fveq1d 6863 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝑊‘𝐷) = ((𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))‘𝐷)) |
| 6 | sneq 4602 | . . . . 5 ⊢ (𝑑 = 𝐷 → {𝑑} = {𝐷}) | |
| 7 | 6 | fveq2d 6865 | . . . 4 ⊢ (𝑑 = 𝐷 → ((⊥𝑃‘𝐾)‘{𝑑}) = ((⊥𝑃‘𝐾)‘{𝐷})) |
| 8 | 7 | difeq2d 4092 | . . 3 ⊢ (𝑑 = 𝐷 → (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
| 9 | eqid 2730 | . . 3 ⊢ (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) | |
| 10 | 1 | fvexi 6875 | . . . 4 ⊢ 𝐴 ∈ V |
| 11 | 10 | difexi 5288 | . . 3 ⊢ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})) ∈ V |
| 12 | 8, 9, 11 | fvmpt 6971 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
| 13 | 5, 12 | sylan9eq 2785 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 {csn 4592 ↦ cmpt 5191 ‘cfv 6514 Atomscatm 39263 ⊥𝑃cpolN 39903 WAtomscwpointsN 39987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-watsN 39991 |
| This theorem is referenced by: iswatN 39995 |
| Copyright terms: Public domain | W3C validator |