Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  watvalN Structured version   Visualization version   GIF version

Theorem watvalN 39376
Description: Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
watomfval.a 𝐴 = (Atomsβ€˜πΎ)
watomfval.p 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
watomfval.w π‘Š = (WAtomsβ€˜πΎ)
Assertion
Ref Expression
watvalN ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (π‘Šβ€˜π·) = (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝐷})))

Proof of Theorem watvalN
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 watomfval.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
2 watomfval.p . . . 4 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
3 watomfval.w . . . 4 π‘Š = (WAtomsβ€˜πΎ)
41, 2, 3watfvalN 39375 . . 3 (𝐾 ∈ 𝐡 β†’ π‘Š = (𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑}))))
54fveq1d 6886 . 2 (𝐾 ∈ 𝐡 β†’ (π‘Šβ€˜π·) = ((𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑})))β€˜π·))
6 sneq 4633 . . . . 5 (𝑑 = 𝐷 β†’ {𝑑} = {𝐷})
76fveq2d 6888 . . . 4 (𝑑 = 𝐷 β†’ ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑}) = ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝐷}))
87difeq2d 4117 . . 3 (𝑑 = 𝐷 β†’ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑})) = (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝐷})))
9 eqid 2726 . . 3 (𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑}))) = (𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑})))
101fvexi 6898 . . . 4 𝐴 ∈ V
1110difexi 5321 . . 3 (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝐷})) ∈ V
128, 9, 11fvmpt 6991 . 2 (𝐷 ∈ 𝐴 β†’ ((𝑑 ∈ 𝐴 ↦ (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝑑})))β€˜π·) = (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝐷})))
135, 12sylan9eq 2786 1 ((𝐾 ∈ 𝐡 ∧ 𝐷 ∈ 𝐴) β†’ (π‘Šβ€˜π·) = (𝐴 βˆ– ((βŠ₯π‘ƒβ€˜πΎ)β€˜{𝐷})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   βˆ– cdif 3940  {csn 4623   ↦ cmpt 5224  β€˜cfv 6536  Atomscatm 38645  βŠ₯𝑃cpolN 39285  WAtomscwpointsN 39369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-watsN 39373
This theorem is referenced by:  iswatN  39377
  Copyright terms: Public domain W3C validator