Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > watvalN | Structured version Visualization version GIF version |
Description: Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
watomfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
watomfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
watomfval.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
Ref | Expression |
---|---|
watvalN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | watomfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | watomfval.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
3 | watomfval.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
4 | 1, 2, 3 | watfvalN 37985 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
5 | 4 | fveq1d 6770 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝑊‘𝐷) = ((𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))‘𝐷)) |
6 | sneq 4576 | . . . . 5 ⊢ (𝑑 = 𝐷 → {𝑑} = {𝐷}) | |
7 | 6 | fveq2d 6772 | . . . 4 ⊢ (𝑑 = 𝐷 → ((⊥𝑃‘𝐾)‘{𝑑}) = ((⊥𝑃‘𝐾)‘{𝐷})) |
8 | 7 | difeq2d 4061 | . . 3 ⊢ (𝑑 = 𝐷 → (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
9 | eqid 2739 | . . 3 ⊢ (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) | |
10 | 1 | fvexi 6782 | . . . 4 ⊢ 𝐴 ∈ V |
11 | 10 | difexi 5255 | . . 3 ⊢ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})) ∈ V |
12 | 8, 9, 11 | fvmpt 6869 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
13 | 5, 12 | sylan9eq 2799 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∖ cdif 3888 {csn 4566 ↦ cmpt 5161 ‘cfv 6430 Atomscatm 37256 ⊥𝑃cpolN 37895 WAtomscwpointsN 37979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-watsN 37983 |
This theorem is referenced by: iswatN 37987 |
Copyright terms: Public domain | W3C validator |