![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > watvalN | Structured version Visualization version GIF version |
Description: Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
watomfval.a | β’ π΄ = (AtomsβπΎ) |
watomfval.p | β’ π = (β₯πβπΎ) |
watomfval.w | β’ π = (WAtomsβπΎ) |
Ref | Expression |
---|---|
watvalN | β’ ((πΎ β π΅ β§ π· β π΄) β (πβπ·) = (π΄ β ((β₯πβπΎ)β{π·}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | watomfval.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
2 | watomfval.p | . . . 4 β’ π = (β₯πβπΎ) | |
3 | watomfval.w | . . . 4 β’ π = (WAtomsβπΎ) | |
4 | 1, 2, 3 | watfvalN 39375 | . . 3 β’ (πΎ β π΅ β π = (π β π΄ β¦ (π΄ β ((β₯πβπΎ)β{π})))) |
5 | 4 | fveq1d 6886 | . 2 β’ (πΎ β π΅ β (πβπ·) = ((π β π΄ β¦ (π΄ β ((β₯πβπΎ)β{π})))βπ·)) |
6 | sneq 4633 | . . . . 5 β’ (π = π· β {π} = {π·}) | |
7 | 6 | fveq2d 6888 | . . . 4 β’ (π = π· β ((β₯πβπΎ)β{π}) = ((β₯πβπΎ)β{π·})) |
8 | 7 | difeq2d 4117 | . . 3 β’ (π = π· β (π΄ β ((β₯πβπΎ)β{π})) = (π΄ β ((β₯πβπΎ)β{π·}))) |
9 | eqid 2726 | . . 3 β’ (π β π΄ β¦ (π΄ β ((β₯πβπΎ)β{π}))) = (π β π΄ β¦ (π΄ β ((β₯πβπΎ)β{π}))) | |
10 | 1 | fvexi 6898 | . . . 4 β’ π΄ β V |
11 | 10 | difexi 5321 | . . 3 β’ (π΄ β ((β₯πβπΎ)β{π·})) β V |
12 | 8, 9, 11 | fvmpt 6991 | . 2 β’ (π· β π΄ β ((π β π΄ β¦ (π΄ β ((β₯πβπΎ)β{π})))βπ·) = (π΄ β ((β₯πβπΎ)β{π·}))) |
13 | 5, 12 | sylan9eq 2786 | 1 β’ ((πΎ β π΅ β§ π· β π΄) β (πβπ·) = (π΄ β ((β₯πβπΎ)β{π·}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 β cdif 3940 {csn 4623 β¦ cmpt 5224 βcfv 6536 Atomscatm 38645 β₯πcpolN 39285 WAtomscwpointsN 39369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-watsN 39373 |
This theorem is referenced by: iswatN 39377 |
Copyright terms: Public domain | W3C validator |