| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > watvalN | Structured version Visualization version GIF version | ||
| Description: Value of the W atoms function. (Contributed by NM, 26-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| watomfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| watomfval.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| watomfval.w | ⊢ 𝑊 = (WAtoms‘𝐾) |
| Ref | Expression |
|---|---|
| watvalN | ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | watomfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | watomfval.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 3 | watomfval.w | . . . 4 ⊢ 𝑊 = (WAtoms‘𝐾) | |
| 4 | 1, 2, 3 | watfvalN 40010 | . . 3 ⊢ (𝐾 ∈ 𝐵 → 𝑊 = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))) |
| 5 | 4 | fveq1d 6819 | . 2 ⊢ (𝐾 ∈ 𝐵 → (𝑊‘𝐷) = ((𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))‘𝐷)) |
| 6 | sneq 4584 | . . . . 5 ⊢ (𝑑 = 𝐷 → {𝑑} = {𝐷}) | |
| 7 | 6 | fveq2d 6821 | . . . 4 ⊢ (𝑑 = 𝐷 → ((⊥𝑃‘𝐾)‘{𝑑}) = ((⊥𝑃‘𝐾)‘{𝐷})) |
| 8 | 7 | difeq2d 4074 | . . 3 ⊢ (𝑑 = 𝐷 → (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
| 9 | eqid 2730 | . . 3 ⊢ (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) = (𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑}))) | |
| 10 | 1 | fvexi 6831 | . . . 4 ⊢ 𝐴 ∈ V |
| 11 | 10 | difexi 5266 | . . 3 ⊢ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷})) ∈ V |
| 12 | 8, 9, 11 | fvmpt 6924 | . 2 ⊢ (𝐷 ∈ 𝐴 → ((𝑑 ∈ 𝐴 ↦ (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝑑})))‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
| 13 | 5, 12 | sylan9eq 2785 | 1 ⊢ ((𝐾 ∈ 𝐵 ∧ 𝐷 ∈ 𝐴) → (𝑊‘𝐷) = (𝐴 ∖ ((⊥𝑃‘𝐾)‘{𝐷}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ∖ cdif 3897 {csn 4574 ↦ cmpt 5170 ‘cfv 6477 Atomscatm 39281 ⊥𝑃cpolN 39920 WAtomscwpointsN 40004 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-watsN 40008 |
| This theorem is referenced by: iswatN 40012 |
| Copyright terms: Public domain | W3C validator |