Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnsrexpcl Structured version   Visualization version   GIF version

Theorem cnsrexpcl 43141
Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
cnsrexpcl.s (𝜑𝑆 ∈ (SubRing‘ℂfld))
cnsrexpcl.x (𝜑𝑋𝑆)
cnsrexpcl.y (𝜑𝑌 ∈ ℕ0)
Assertion
Ref Expression
cnsrexpcl (𝜑 → (𝑋𝑌) ∈ 𝑆)

Proof of Theorem cnsrexpcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsrexpcl.y . 2 (𝜑𝑌 ∈ ℕ0)
2 oveq2 7361 . . . . 5 (𝑎 = 0 → (𝑋𝑎) = (𝑋↑0))
32eleq1d 2813 . . . 4 (𝑎 = 0 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋↑0) ∈ 𝑆))
43imbi2d 340 . . 3 (𝑎 = 0 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑0) ∈ 𝑆)))
5 oveq2 7361 . . . . 5 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
65eleq1d 2813 . . . 4 (𝑎 = 𝑏 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋𝑏) ∈ 𝑆))
76imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋𝑏) ∈ 𝑆)))
8 oveq2 7361 . . . . 5 (𝑎 = (𝑏 + 1) → (𝑋𝑎) = (𝑋↑(𝑏 + 1)))
98eleq1d 2813 . . . 4 (𝑎 = (𝑏 + 1) → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋↑(𝑏 + 1)) ∈ 𝑆))
109imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
11 oveq2 7361 . . . . 5 (𝑎 = 𝑌 → (𝑋𝑎) = (𝑋𝑌))
1211eleq1d 2813 . . . 4 (𝑎 = 𝑌 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋𝑌) ∈ 𝑆))
1312imbi2d 340 . . 3 (𝑎 = 𝑌 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋𝑌) ∈ 𝑆)))
14 cnsrexpcl.s . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘ℂfld))
15 cnfldbas 21283 . . . . . . . 8 ℂ = (Base‘ℂfld)
1615subrgss 20475 . . . . . . 7 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
1714, 16syl 17 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
18 cnsrexpcl.x . . . . . 6 (𝜑𝑋𝑆)
1917, 18sseldd 3938 . . . . 5 (𝜑𝑋 ∈ ℂ)
2019exp0d 14065 . . . 4 (𝜑 → (𝑋↑0) = 1)
21 cnfld1 21318 . . . . . 6 1 = (1r‘ℂfld)
2221subrg1cl 20483 . . . . 5 (𝑆 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑆)
2314, 22syl 17 . . . 4 (𝜑 → 1 ∈ 𝑆)
2420, 23eqeltrd 2828 . . 3 (𝜑 → (𝑋↑0) ∈ 𝑆)
25193ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑋 ∈ ℂ)
26 simp1 1136 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑏 ∈ ℕ0)
2725, 26expp1d 14072 . . . . . 6 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) = ((𝑋𝑏) · 𝑋))
28143ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑆 ∈ (SubRing‘ℂfld))
29 simp3 1138 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋𝑏) ∈ 𝑆)
30183ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑋𝑆)
31 cnfldmul 21287 . . . . . . . 8 · = (.r‘ℂfld)
3231subrgmcl 20487 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑋𝑏) ∈ 𝑆𝑋𝑆) → ((𝑋𝑏) · 𝑋) ∈ 𝑆)
3328, 29, 30, 32syl3anc 1373 . . . . . 6 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → ((𝑋𝑏) · 𝑋) ∈ 𝑆)
3427, 33eqeltrd 2828 . . . . 5 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) ∈ 𝑆)
35343exp 1119 . . . 4 (𝑏 ∈ ℕ0 → (𝜑 → ((𝑋𝑏) ∈ 𝑆 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
3635a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝜑 → (𝑋𝑏) ∈ 𝑆) → (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
374, 7, 10, 13, 24, 36nn0ind 12589 . 2 (𝑌 ∈ ℕ0 → (𝜑 → (𝑋𝑌) ∈ 𝑆))
381, 37mpcom 38 1 (𝜑 → (𝑋𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wss 3905  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  0cn0 12402  cexp 13986  SubRingcsubrg 20472  fldccnfld 21279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-addf 11107  ax-mulf 11108
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-seq 13927  df-exp 13987  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-subg 19020  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-cring 20139  df-subrng 20449  df-subrg 20473  df-cnfld 21280
This theorem is referenced by:  cnsrplycl  43143
  Copyright terms: Public domain W3C validator