| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnsrexpcl | Structured version Visualization version GIF version | ||
| Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| Ref | Expression |
|---|---|
| cnsrexpcl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) |
| cnsrexpcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
| cnsrexpcl.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| cnsrexpcl | ⊢ (𝜑 → (𝑋↑𝑌) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnsrexpcl.y | . 2 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
| 2 | oveq2 7354 | . . . . 5 ⊢ (𝑎 = 0 → (𝑋↑𝑎) = (𝑋↑0)) | |
| 3 | 2 | eleq1d 2816 | . . . 4 ⊢ (𝑎 = 0 → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑0) ∈ 𝑆)) |
| 4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑎 = 0 → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑0) ∈ 𝑆))) |
| 5 | oveq2 7354 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑋↑𝑎) = (𝑋↑𝑏)) | |
| 6 | 5 | eleq1d 2816 | . . . 4 ⊢ (𝑎 = 𝑏 → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑𝑏) ∈ 𝑆)) |
| 7 | 6 | imbi2d 340 | . . 3 ⊢ (𝑎 = 𝑏 → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑𝑏) ∈ 𝑆))) |
| 8 | oveq2 7354 | . . . . 5 ⊢ (𝑎 = (𝑏 + 1) → (𝑋↑𝑎) = (𝑋↑(𝑏 + 1))) | |
| 9 | 8 | eleq1d 2816 | . . . 4 ⊢ (𝑎 = (𝑏 + 1) → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑(𝑏 + 1)) ∈ 𝑆)) |
| 10 | 9 | imbi2d 340 | . . 3 ⊢ (𝑎 = (𝑏 + 1) → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆))) |
| 11 | oveq2 7354 | . . . . 5 ⊢ (𝑎 = 𝑌 → (𝑋↑𝑎) = (𝑋↑𝑌)) | |
| 12 | 11 | eleq1d 2816 | . . . 4 ⊢ (𝑎 = 𝑌 → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑𝑌) ∈ 𝑆)) |
| 13 | 12 | imbi2d 340 | . . 3 ⊢ (𝑎 = 𝑌 → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑𝑌) ∈ 𝑆))) |
| 14 | cnsrexpcl.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) | |
| 15 | cnfldbas 21296 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
| 16 | 15 | subrgss 20488 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
| 17 | 14, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 18 | cnsrexpcl.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
| 19 | 17, 18 | sseldd 3935 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
| 20 | 19 | exp0d 14047 | . . . 4 ⊢ (𝜑 → (𝑋↑0) = 1) |
| 21 | cnfld1 21331 | . . . . . 6 ⊢ 1 = (1r‘ℂfld) | |
| 22 | 21 | subrg1cl 20496 | . . . . 5 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑆) |
| 23 | 14, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝑆) |
| 24 | 20, 23 | eqeltrd 2831 | . . 3 ⊢ (𝜑 → (𝑋↑0) ∈ 𝑆) |
| 25 | 19 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑋 ∈ ℂ) |
| 26 | simp1 1136 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑏 ∈ ℕ0) | |
| 27 | 25, 26 | expp1d 14054 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) = ((𝑋↑𝑏) · 𝑋)) |
| 28 | 14 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑆 ∈ (SubRing‘ℂfld)) |
| 29 | simp3 1138 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → (𝑋↑𝑏) ∈ 𝑆) | |
| 30 | 18 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑋 ∈ 𝑆) |
| 31 | cnfldmul 21300 | . . . . . . . 8 ⊢ · = (.r‘ℂfld) | |
| 32 | 31 | subrgmcl 20500 | . . . . . . 7 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑋↑𝑏) ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) → ((𝑋↑𝑏) · 𝑋) ∈ 𝑆) |
| 33 | 28, 29, 30, 32 | syl3anc 1373 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → ((𝑋↑𝑏) · 𝑋) ∈ 𝑆) |
| 34 | 27, 33 | eqeltrd 2831 | . . . . 5 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) ∈ 𝑆) |
| 35 | 34 | 3exp 1119 | . . . 4 ⊢ (𝑏 ∈ ℕ0 → (𝜑 → ((𝑋↑𝑏) ∈ 𝑆 → (𝑋↑(𝑏 + 1)) ∈ 𝑆))) |
| 36 | 35 | a2d 29 | . . 3 ⊢ (𝑏 ∈ ℕ0 → ((𝜑 → (𝑋↑𝑏) ∈ 𝑆) → (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆))) |
| 37 | 4, 7, 10, 13, 24, 36 | nn0ind 12568 | . 2 ⊢ (𝑌 ∈ ℕ0 → (𝜑 → (𝑋↑𝑌) ∈ 𝑆)) |
| 38 | 1, 37 | mpcom 38 | 1 ⊢ (𝜑 → (𝑋↑𝑌) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 ℕ0cn0 12381 ↑cexp 13968 SubRingcsubrg 20485 ℂfldccnfld 21292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-addf 11085 ax-mulf 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-seq 13909 df-exp 13969 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-cring 20155 df-subrng 20462 df-subrg 20486 df-cnfld 21293 |
| This theorem is referenced by: cnsrplycl 43206 |
| Copyright terms: Public domain | W3C validator |