Step | Hyp | Ref
| Expression |
1 | | cnsrexpcl.y |
. 2
β’ (π β π β
β0) |
2 | | oveq2 7413 |
. . . . 5
β’ (π = 0 β (πβπ) = (πβ0)) |
3 | 2 | eleq1d 2818 |
. . . 4
β’ (π = 0 β ((πβπ) β π β (πβ0) β π)) |
4 | 3 | imbi2d 340 |
. . 3
β’ (π = 0 β ((π β (πβπ) β π) β (π β (πβ0) β π))) |
5 | | oveq2 7413 |
. . . . 5
β’ (π = π β (πβπ) = (πβπ)) |
6 | 5 | eleq1d 2818 |
. . . 4
β’ (π = π β ((πβπ) β π β (πβπ) β π)) |
7 | 6 | imbi2d 340 |
. . 3
β’ (π = π β ((π β (πβπ) β π) β (π β (πβπ) β π))) |
8 | | oveq2 7413 |
. . . . 5
β’ (π = (π + 1) β (πβπ) = (πβ(π + 1))) |
9 | 8 | eleq1d 2818 |
. . . 4
β’ (π = (π + 1) β ((πβπ) β π β (πβ(π + 1)) β π)) |
10 | 9 | imbi2d 340 |
. . 3
β’ (π = (π + 1) β ((π β (πβπ) β π) β (π β (πβ(π + 1)) β π))) |
11 | | oveq2 7413 |
. . . . 5
β’ (π = π β (πβπ) = (πβπ)) |
12 | 11 | eleq1d 2818 |
. . . 4
β’ (π = π β ((πβπ) β π β (πβπ) β π)) |
13 | 12 | imbi2d 340 |
. . 3
β’ (π = π β ((π β (πβπ) β π) β (π β (πβπ) β π))) |
14 | | cnsrexpcl.s |
. . . . . . 7
β’ (π β π β
(SubRingββfld)) |
15 | | cnfldbas 20940 |
. . . . . . . 8
β’ β =
(Baseββfld) |
16 | 15 | subrgss 20356 |
. . . . . . 7
β’ (π β
(SubRingββfld) β π β β) |
17 | 14, 16 | syl 17 |
. . . . . 6
β’ (π β π β β) |
18 | | cnsrexpcl.x |
. . . . . 6
β’ (π β π β π) |
19 | 17, 18 | sseldd 3982 |
. . . . 5
β’ (π β π β β) |
20 | 19 | exp0d 14101 |
. . . 4
β’ (π β (πβ0) = 1) |
21 | | cnfld1 20962 |
. . . . . 6
β’ 1 =
(1rββfld) |
22 | 21 | subrg1cl 20363 |
. . . . 5
β’ (π β
(SubRingββfld) β 1 β π) |
23 | 14, 22 | syl 17 |
. . . 4
β’ (π β 1 β π) |
24 | 20, 23 | eqeltrd 2833 |
. . 3
β’ (π β (πβ0) β π) |
25 | 19 | 3ad2ant2 1134 |
. . . . . . 7
β’ ((π β β0
β§ π β§ (πβπ) β π) β π β β) |
26 | | simp1 1136 |
. . . . . . 7
β’ ((π β β0
β§ π β§ (πβπ) β π) β π β β0) |
27 | 25, 26 | expp1d 14108 |
. . . . . 6
β’ ((π β β0
β§ π β§ (πβπ) β π) β (πβ(π + 1)) = ((πβπ) Β· π)) |
28 | 14 | 3ad2ant2 1134 |
. . . . . . 7
β’ ((π β β0
β§ π β§ (πβπ) β π) β π β
(SubRingββfld)) |
29 | | simp3 1138 |
. . . . . . 7
β’ ((π β β0
β§ π β§ (πβπ) β π) β (πβπ) β π) |
30 | 18 | 3ad2ant2 1134 |
. . . . . . 7
β’ ((π β β0
β§ π β§ (πβπ) β π) β π β π) |
31 | | cnfldmul 20942 |
. . . . . . . 8
β’ Β·
= (.rββfld) |
32 | 31 | subrgmcl 20367 |
. . . . . . 7
β’ ((π β
(SubRingββfld) β§ (πβπ) β π β§ π β π) β ((πβπ) Β· π) β π) |
33 | 28, 29, 30, 32 | syl3anc 1371 |
. . . . . 6
β’ ((π β β0
β§ π β§ (πβπ) β π) β ((πβπ) Β· π) β π) |
34 | 27, 33 | eqeltrd 2833 |
. . . . 5
β’ ((π β β0
β§ π β§ (πβπ) β π) β (πβ(π + 1)) β π) |
35 | 34 | 3exp 1119 |
. . . 4
β’ (π β β0
β (π β ((πβπ) β π β (πβ(π + 1)) β π))) |
36 | 35 | a2d 29 |
. . 3
β’ (π β β0
β ((π β (πβπ) β π) β (π β (πβ(π + 1)) β π))) |
37 | 4, 7, 10, 13, 24, 36 | nn0ind 12653 |
. 2
β’ (π β β0
β (π β (πβπ) β π)) |
38 | 1, 37 | mpcom 38 |
1
β’ (π β (πβπ) β π) |