Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnsrexpcl | Structured version Visualization version GIF version |
Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
Ref | Expression |
---|---|
cnsrexpcl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) |
cnsrexpcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
cnsrexpcl.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) |
Ref | Expression |
---|---|
cnsrexpcl | ⊢ (𝜑 → (𝑋↑𝑌) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsrexpcl.y | . 2 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
2 | oveq2 7221 | . . . . 5 ⊢ (𝑎 = 0 → (𝑋↑𝑎) = (𝑋↑0)) | |
3 | 2 | eleq1d 2822 | . . . 4 ⊢ (𝑎 = 0 → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑0) ∈ 𝑆)) |
4 | 3 | imbi2d 344 | . . 3 ⊢ (𝑎 = 0 → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑0) ∈ 𝑆))) |
5 | oveq2 7221 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑋↑𝑎) = (𝑋↑𝑏)) | |
6 | 5 | eleq1d 2822 | . . . 4 ⊢ (𝑎 = 𝑏 → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑𝑏) ∈ 𝑆)) |
7 | 6 | imbi2d 344 | . . 3 ⊢ (𝑎 = 𝑏 → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑𝑏) ∈ 𝑆))) |
8 | oveq2 7221 | . . . . 5 ⊢ (𝑎 = (𝑏 + 1) → (𝑋↑𝑎) = (𝑋↑(𝑏 + 1))) | |
9 | 8 | eleq1d 2822 | . . . 4 ⊢ (𝑎 = (𝑏 + 1) → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑(𝑏 + 1)) ∈ 𝑆)) |
10 | 9 | imbi2d 344 | . . 3 ⊢ (𝑎 = (𝑏 + 1) → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆))) |
11 | oveq2 7221 | . . . . 5 ⊢ (𝑎 = 𝑌 → (𝑋↑𝑎) = (𝑋↑𝑌)) | |
12 | 11 | eleq1d 2822 | . . . 4 ⊢ (𝑎 = 𝑌 → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑𝑌) ∈ 𝑆)) |
13 | 12 | imbi2d 344 | . . 3 ⊢ (𝑎 = 𝑌 → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑𝑌) ∈ 𝑆))) |
14 | cnsrexpcl.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) | |
15 | cnfldbas 20367 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
16 | 15 | subrgss 19801 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
17 | 14, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
18 | cnsrexpcl.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
19 | 17, 18 | sseldd 3902 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
20 | 19 | exp0d 13710 | . . . 4 ⊢ (𝜑 → (𝑋↑0) = 1) |
21 | cnfld1 20388 | . . . . . 6 ⊢ 1 = (1r‘ℂfld) | |
22 | 21 | subrg1cl 19808 | . . . . 5 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑆) |
23 | 14, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝑆) |
24 | 20, 23 | eqeltrd 2838 | . . 3 ⊢ (𝜑 → (𝑋↑0) ∈ 𝑆) |
25 | 19 | 3ad2ant2 1136 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑋 ∈ ℂ) |
26 | simp1 1138 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑏 ∈ ℕ0) | |
27 | 25, 26 | expp1d 13717 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) = ((𝑋↑𝑏) · 𝑋)) |
28 | 14 | 3ad2ant2 1136 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑆 ∈ (SubRing‘ℂfld)) |
29 | simp3 1140 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → (𝑋↑𝑏) ∈ 𝑆) | |
30 | 18 | 3ad2ant2 1136 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑋 ∈ 𝑆) |
31 | cnfldmul 20369 | . . . . . . . 8 ⊢ · = (.r‘ℂfld) | |
32 | 31 | subrgmcl 19812 | . . . . . . 7 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑋↑𝑏) ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) → ((𝑋↑𝑏) · 𝑋) ∈ 𝑆) |
33 | 28, 29, 30, 32 | syl3anc 1373 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → ((𝑋↑𝑏) · 𝑋) ∈ 𝑆) |
34 | 27, 33 | eqeltrd 2838 | . . . . 5 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) ∈ 𝑆) |
35 | 34 | 3exp 1121 | . . . 4 ⊢ (𝑏 ∈ ℕ0 → (𝜑 → ((𝑋↑𝑏) ∈ 𝑆 → (𝑋↑(𝑏 + 1)) ∈ 𝑆))) |
36 | 35 | a2d 29 | . . 3 ⊢ (𝑏 ∈ ℕ0 → ((𝜑 → (𝑋↑𝑏) ∈ 𝑆) → (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆))) |
37 | 4, 7, 10, 13, 24, 36 | nn0ind 12272 | . 2 ⊢ (𝑌 ∈ ℕ0 → (𝜑 → (𝑋↑𝑌) ∈ 𝑆)) |
38 | 1, 37 | mpcom 38 | 1 ⊢ (𝜑 → (𝑋↑𝑌) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 ‘cfv 6380 (class class class)co 7213 ℂcc 10727 0cc0 10729 1c1 10730 + caddc 10732 · cmul 10734 ℕ0cn0 12090 ↑cexp 13635 SubRingcsubrg 19796 ℂfldccnfld 20363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-addf 10808 ax-mulf 10809 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-4 11895 df-5 11896 df-6 11897 df-7 11898 df-8 11899 df-9 11900 df-n0 12091 df-z 12177 df-dec 12294 df-uz 12439 df-fz 13096 df-seq 13575 df-exp 13636 df-struct 16700 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-ress 16785 df-plusg 16815 df-mulr 16816 df-starv 16817 df-tset 16821 df-ple 16822 df-ds 16824 df-unif 16825 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-subg 18540 df-cmn 19172 df-mgp 19505 df-ur 19517 df-ring 19564 df-cring 19565 df-subrg 19798 df-cnfld 20364 |
This theorem is referenced by: cnsrplycl 40695 |
Copyright terms: Public domain | W3C validator |