Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnsrexpcl Structured version   Visualization version   GIF version

Theorem cnsrexpcl 39271
Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
cnsrexpcl.s (𝜑𝑆 ∈ (SubRing‘ℂfld))
cnsrexpcl.x (𝜑𝑋𝑆)
cnsrexpcl.y (𝜑𝑌 ∈ ℕ0)
Assertion
Ref Expression
cnsrexpcl (𝜑 → (𝑋𝑌) ∈ 𝑆)

Proof of Theorem cnsrexpcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsrexpcl.y . 2 (𝜑𝑌 ∈ ℕ0)
2 oveq2 7031 . . . . 5 (𝑎 = 0 → (𝑋𝑎) = (𝑋↑0))
32eleq1d 2869 . . . 4 (𝑎 = 0 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋↑0) ∈ 𝑆))
43imbi2d 342 . . 3 (𝑎 = 0 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑0) ∈ 𝑆)))
5 oveq2 7031 . . . . 5 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
65eleq1d 2869 . . . 4 (𝑎 = 𝑏 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋𝑏) ∈ 𝑆))
76imbi2d 342 . . 3 (𝑎 = 𝑏 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋𝑏) ∈ 𝑆)))
8 oveq2 7031 . . . . 5 (𝑎 = (𝑏 + 1) → (𝑋𝑎) = (𝑋↑(𝑏 + 1)))
98eleq1d 2869 . . . 4 (𝑎 = (𝑏 + 1) → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋↑(𝑏 + 1)) ∈ 𝑆))
109imbi2d 342 . . 3 (𝑎 = (𝑏 + 1) → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
11 oveq2 7031 . . . . 5 (𝑎 = 𝑌 → (𝑋𝑎) = (𝑋𝑌))
1211eleq1d 2869 . . . 4 (𝑎 = 𝑌 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋𝑌) ∈ 𝑆))
1312imbi2d 342 . . 3 (𝑎 = 𝑌 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋𝑌) ∈ 𝑆)))
14 cnsrexpcl.s . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘ℂfld))
15 cnfldbas 20235 . . . . . . . 8 ℂ = (Base‘ℂfld)
1615subrgss 19230 . . . . . . 7 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
1714, 16syl 17 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
18 cnsrexpcl.x . . . . . 6 (𝜑𝑋𝑆)
1917, 18sseldd 3896 . . . . 5 (𝜑𝑋 ∈ ℂ)
2019exp0d 13358 . . . 4 (𝜑 → (𝑋↑0) = 1)
21 cnfld1 20256 . . . . . 6 1 = (1r‘ℂfld)
2221subrg1cl 19237 . . . . 5 (𝑆 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑆)
2314, 22syl 17 . . . 4 (𝜑 → 1 ∈ 𝑆)
2420, 23eqeltrd 2885 . . 3 (𝜑 → (𝑋↑0) ∈ 𝑆)
25193ad2ant2 1127 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑋 ∈ ℂ)
26 simp1 1129 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑏 ∈ ℕ0)
2725, 26expp1d 13365 . . . . . 6 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) = ((𝑋𝑏) · 𝑋))
28143ad2ant2 1127 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑆 ∈ (SubRing‘ℂfld))
29 simp3 1131 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋𝑏) ∈ 𝑆)
30183ad2ant2 1127 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑋𝑆)
31 cnfldmul 20237 . . . . . . . 8 · = (.r‘ℂfld)
3231subrgmcl 19241 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑋𝑏) ∈ 𝑆𝑋𝑆) → ((𝑋𝑏) · 𝑋) ∈ 𝑆)
3328, 29, 30, 32syl3anc 1364 . . . . . 6 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → ((𝑋𝑏) · 𝑋) ∈ 𝑆)
3427, 33eqeltrd 2885 . . . . 5 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) ∈ 𝑆)
35343exp 1112 . . . 4 (𝑏 ∈ ℕ0 → (𝜑 → ((𝑋𝑏) ∈ 𝑆 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
3635a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝜑 → (𝑋𝑏) ∈ 𝑆) → (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
374, 7, 10, 13, 24, 36nn0ind 11931 . 2 (𝑌 ∈ ℕ0 → (𝜑 → (𝑋𝑌) ∈ 𝑆))
381, 37mpcom 38 1 (𝜑 → (𝑋𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1080   = wceq 1525  wcel 2083  wss 3865  cfv 6232  (class class class)co 7023  cc 10388  0cc0 10390  1c1 10391   + caddc 10393   · cmul 10395  0cn0 11751  cexp 13283  SubRingcsubrg 19225  fldccnfld 20231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-addf 10469  ax-mulf 10470
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-fz 12747  df-seq 13224  df-exp 13284  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-mulr 16412  df-starv 16413  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-0g 16548  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-grp 17868  df-subg 18034  df-cmn 18639  df-mgp 18934  df-ur 18946  df-ring 18993  df-cring 18994  df-subrg 19227  df-cnfld 20232
This theorem is referenced by:  cnsrplycl  39273
  Copyright terms: Public domain W3C validator