Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnsrexpcl Structured version   Visualization version   GIF version

Theorem cnsrexpcl 43140
Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
cnsrexpcl.s (𝜑𝑆 ∈ (SubRing‘ℂfld))
cnsrexpcl.x (𝜑𝑋𝑆)
cnsrexpcl.y (𝜑𝑌 ∈ ℕ0)
Assertion
Ref Expression
cnsrexpcl (𝜑 → (𝑋𝑌) ∈ 𝑆)

Proof of Theorem cnsrexpcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsrexpcl.y . 2 (𝜑𝑌 ∈ ℕ0)
2 oveq2 7421 . . . . 5 (𝑎 = 0 → (𝑋𝑎) = (𝑋↑0))
32eleq1d 2818 . . . 4 (𝑎 = 0 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋↑0) ∈ 𝑆))
43imbi2d 340 . . 3 (𝑎 = 0 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑0) ∈ 𝑆)))
5 oveq2 7421 . . . . 5 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
65eleq1d 2818 . . . 4 (𝑎 = 𝑏 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋𝑏) ∈ 𝑆))
76imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋𝑏) ∈ 𝑆)))
8 oveq2 7421 . . . . 5 (𝑎 = (𝑏 + 1) → (𝑋𝑎) = (𝑋↑(𝑏 + 1)))
98eleq1d 2818 . . . 4 (𝑎 = (𝑏 + 1) → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋↑(𝑏 + 1)) ∈ 𝑆))
109imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
11 oveq2 7421 . . . . 5 (𝑎 = 𝑌 → (𝑋𝑎) = (𝑋𝑌))
1211eleq1d 2818 . . . 4 (𝑎 = 𝑌 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋𝑌) ∈ 𝑆))
1312imbi2d 340 . . 3 (𝑎 = 𝑌 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋𝑌) ∈ 𝑆)))
14 cnsrexpcl.s . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘ℂfld))
15 cnfldbas 21330 . . . . . . . 8 ℂ = (Base‘ℂfld)
1615subrgss 20540 . . . . . . 7 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
1714, 16syl 17 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
18 cnsrexpcl.x . . . . . 6 (𝜑𝑋𝑆)
1917, 18sseldd 3964 . . . . 5 (𝜑𝑋 ∈ ℂ)
2019exp0d 14162 . . . 4 (𝜑 → (𝑋↑0) = 1)
21 cnfld1 21368 . . . . . 6 1 = (1r‘ℂfld)
2221subrg1cl 20548 . . . . 5 (𝑆 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑆)
2314, 22syl 17 . . . 4 (𝜑 → 1 ∈ 𝑆)
2420, 23eqeltrd 2833 . . 3 (𝜑 → (𝑋↑0) ∈ 𝑆)
25193ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑋 ∈ ℂ)
26 simp1 1136 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑏 ∈ ℕ0)
2725, 26expp1d 14169 . . . . . 6 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) = ((𝑋𝑏) · 𝑋))
28143ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑆 ∈ (SubRing‘ℂfld))
29 simp3 1138 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋𝑏) ∈ 𝑆)
30183ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑋𝑆)
31 cnfldmul 21334 . . . . . . . 8 · = (.r‘ℂfld)
3231subrgmcl 20552 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑋𝑏) ∈ 𝑆𝑋𝑆) → ((𝑋𝑏) · 𝑋) ∈ 𝑆)
3328, 29, 30, 32syl3anc 1372 . . . . . 6 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → ((𝑋𝑏) · 𝑋) ∈ 𝑆)
3427, 33eqeltrd 2833 . . . . 5 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) ∈ 𝑆)
35343exp 1119 . . . 4 (𝑏 ∈ ℕ0 → (𝜑 → ((𝑋𝑏) ∈ 𝑆 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
3635a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝜑 → (𝑋𝑏) ∈ 𝑆) → (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
374, 7, 10, 13, 24, 36nn0ind 12696 . 2 (𝑌 ∈ ℕ0 → (𝜑 → (𝑋𝑌) ∈ 𝑆))
381, 37mpcom 38 1 (𝜑 → (𝑋𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wss 3931  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  0cn0 12509  cexp 14084  SubRingcsubrg 20537  fldccnfld 21326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-seq 14025  df-exp 14085  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-grp 18923  df-minusg 18924  df-subg 19110  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20514  df-subrg 20538  df-cnfld 21327
This theorem is referenced by:  cnsrplycl  43142
  Copyright terms: Public domain W3C validator