Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnsrexpcl Structured version   Visualization version   GIF version

Theorem cnsrexpcl 41478
Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
cnsrexpcl.s (𝜑𝑆 ∈ (SubRing‘ℂfld))
cnsrexpcl.x (𝜑𝑋𝑆)
cnsrexpcl.y (𝜑𝑌 ∈ ℕ0)
Assertion
Ref Expression
cnsrexpcl (𝜑 → (𝑋𝑌) ∈ 𝑆)

Proof of Theorem cnsrexpcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsrexpcl.y . 2 (𝜑𝑌 ∈ ℕ0)
2 oveq2 7365 . . . . 5 (𝑎 = 0 → (𝑋𝑎) = (𝑋↑0))
32eleq1d 2822 . . . 4 (𝑎 = 0 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋↑0) ∈ 𝑆))
43imbi2d 340 . . 3 (𝑎 = 0 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑0) ∈ 𝑆)))
5 oveq2 7365 . . . . 5 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
65eleq1d 2822 . . . 4 (𝑎 = 𝑏 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋𝑏) ∈ 𝑆))
76imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋𝑏) ∈ 𝑆)))
8 oveq2 7365 . . . . 5 (𝑎 = (𝑏 + 1) → (𝑋𝑎) = (𝑋↑(𝑏 + 1)))
98eleq1d 2822 . . . 4 (𝑎 = (𝑏 + 1) → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋↑(𝑏 + 1)) ∈ 𝑆))
109imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
11 oveq2 7365 . . . . 5 (𝑎 = 𝑌 → (𝑋𝑎) = (𝑋𝑌))
1211eleq1d 2822 . . . 4 (𝑎 = 𝑌 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋𝑌) ∈ 𝑆))
1312imbi2d 340 . . 3 (𝑎 = 𝑌 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋𝑌) ∈ 𝑆)))
14 cnsrexpcl.s . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘ℂfld))
15 cnfldbas 20800 . . . . . . . 8 ℂ = (Base‘ℂfld)
1615subrgss 20223 . . . . . . 7 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
1714, 16syl 17 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
18 cnsrexpcl.x . . . . . 6 (𝜑𝑋𝑆)
1917, 18sseldd 3945 . . . . 5 (𝜑𝑋 ∈ ℂ)
2019exp0d 14045 . . . 4 (𝜑 → (𝑋↑0) = 1)
21 cnfld1 20822 . . . . . 6 1 = (1r‘ℂfld)
2221subrg1cl 20230 . . . . 5 (𝑆 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑆)
2314, 22syl 17 . . . 4 (𝜑 → 1 ∈ 𝑆)
2420, 23eqeltrd 2838 . . 3 (𝜑 → (𝑋↑0) ∈ 𝑆)
25193ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑋 ∈ ℂ)
26 simp1 1136 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑏 ∈ ℕ0)
2725, 26expp1d 14052 . . . . . 6 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) = ((𝑋𝑏) · 𝑋))
28143ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑆 ∈ (SubRing‘ℂfld))
29 simp3 1138 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋𝑏) ∈ 𝑆)
30183ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑋𝑆)
31 cnfldmul 20802 . . . . . . . 8 · = (.r‘ℂfld)
3231subrgmcl 20234 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑋𝑏) ∈ 𝑆𝑋𝑆) → ((𝑋𝑏) · 𝑋) ∈ 𝑆)
3328, 29, 30, 32syl3anc 1371 . . . . . 6 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → ((𝑋𝑏) · 𝑋) ∈ 𝑆)
3427, 33eqeltrd 2838 . . . . 5 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) ∈ 𝑆)
35343exp 1119 . . . 4 (𝑏 ∈ ℕ0 → (𝜑 → ((𝑋𝑏) ∈ 𝑆 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
3635a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝜑 → (𝑋𝑏) ∈ 𝑆) → (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
374, 7, 10, 13, 24, 36nn0ind 12598 . 2 (𝑌 ∈ ℕ0 → (𝜑 → (𝑋𝑌) ∈ 𝑆))
381, 37mpcom 38 1 (𝜑 → (𝑋𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wss 3910  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  0cn0 12413  cexp 13967  SubRingcsubrg 20218  fldccnfld 20796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-seq 13907  df-exp 13968  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-subg 18925  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-cnfld 20797
This theorem is referenced by:  cnsrplycl  41480
  Copyright terms: Public domain W3C validator