![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnsrexpcl | Structured version Visualization version GIF version |
Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
Ref | Expression |
---|---|
cnsrexpcl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) |
cnsrexpcl.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
cnsrexpcl.y | ⊢ (𝜑 → 𝑌 ∈ ℕ0) |
Ref | Expression |
---|---|
cnsrexpcl | ⊢ (𝜑 → (𝑋↑𝑌) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnsrexpcl.y | . 2 ⊢ (𝜑 → 𝑌 ∈ ℕ0) | |
2 | oveq2 7439 | . . . . 5 ⊢ (𝑎 = 0 → (𝑋↑𝑎) = (𝑋↑0)) | |
3 | 2 | eleq1d 2824 | . . . 4 ⊢ (𝑎 = 0 → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑0) ∈ 𝑆)) |
4 | 3 | imbi2d 340 | . . 3 ⊢ (𝑎 = 0 → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑0) ∈ 𝑆))) |
5 | oveq2 7439 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝑋↑𝑎) = (𝑋↑𝑏)) | |
6 | 5 | eleq1d 2824 | . . . 4 ⊢ (𝑎 = 𝑏 → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑𝑏) ∈ 𝑆)) |
7 | 6 | imbi2d 340 | . . 3 ⊢ (𝑎 = 𝑏 → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑𝑏) ∈ 𝑆))) |
8 | oveq2 7439 | . . . . 5 ⊢ (𝑎 = (𝑏 + 1) → (𝑋↑𝑎) = (𝑋↑(𝑏 + 1))) | |
9 | 8 | eleq1d 2824 | . . . 4 ⊢ (𝑎 = (𝑏 + 1) → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑(𝑏 + 1)) ∈ 𝑆)) |
10 | 9 | imbi2d 340 | . . 3 ⊢ (𝑎 = (𝑏 + 1) → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆))) |
11 | oveq2 7439 | . . . . 5 ⊢ (𝑎 = 𝑌 → (𝑋↑𝑎) = (𝑋↑𝑌)) | |
12 | 11 | eleq1d 2824 | . . . 4 ⊢ (𝑎 = 𝑌 → ((𝑋↑𝑎) ∈ 𝑆 ↔ (𝑋↑𝑌) ∈ 𝑆)) |
13 | 12 | imbi2d 340 | . . 3 ⊢ (𝑎 = 𝑌 → ((𝜑 → (𝑋↑𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑𝑌) ∈ 𝑆))) |
14 | cnsrexpcl.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) | |
15 | cnfldbas 21386 | . . . . . . . 8 ⊢ ℂ = (Base‘ℂfld) | |
16 | 15 | subrgss 20589 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
17 | 14, 16 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
18 | cnsrexpcl.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
19 | 17, 18 | sseldd 3996 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ ℂ) |
20 | 19 | exp0d 14177 | . . . 4 ⊢ (𝜑 → (𝑋↑0) = 1) |
21 | cnfld1 21424 | . . . . . 6 ⊢ 1 = (1r‘ℂfld) | |
22 | 21 | subrg1cl 20597 | . . . . 5 ⊢ (𝑆 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑆) |
23 | 14, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 1 ∈ 𝑆) |
24 | 20, 23 | eqeltrd 2839 | . . 3 ⊢ (𝜑 → (𝑋↑0) ∈ 𝑆) |
25 | 19 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑋 ∈ ℂ) |
26 | simp1 1135 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑏 ∈ ℕ0) | |
27 | 25, 26 | expp1d 14184 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) = ((𝑋↑𝑏) · 𝑋)) |
28 | 14 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑆 ∈ (SubRing‘ℂfld)) |
29 | simp3 1137 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → (𝑋↑𝑏) ∈ 𝑆) | |
30 | 18 | 3ad2ant2 1133 | . . . . . . 7 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → 𝑋 ∈ 𝑆) |
31 | cnfldmul 21390 | . . . . . . . 8 ⊢ · = (.r‘ℂfld) | |
32 | 31 | subrgmcl 20601 | . . . . . . 7 ⊢ ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑋↑𝑏) ∈ 𝑆 ∧ 𝑋 ∈ 𝑆) → ((𝑋↑𝑏) · 𝑋) ∈ 𝑆) |
33 | 28, 29, 30, 32 | syl3anc 1370 | . . . . . 6 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → ((𝑋↑𝑏) · 𝑋) ∈ 𝑆) |
34 | 27, 33 | eqeltrd 2839 | . . . . 5 ⊢ ((𝑏 ∈ ℕ0 ∧ 𝜑 ∧ (𝑋↑𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) ∈ 𝑆) |
35 | 34 | 3exp 1118 | . . . 4 ⊢ (𝑏 ∈ ℕ0 → (𝜑 → ((𝑋↑𝑏) ∈ 𝑆 → (𝑋↑(𝑏 + 1)) ∈ 𝑆))) |
36 | 35 | a2d 29 | . . 3 ⊢ (𝑏 ∈ ℕ0 → ((𝜑 → (𝑋↑𝑏) ∈ 𝑆) → (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆))) |
37 | 4, 7, 10, 13, 24, 36 | nn0ind 12711 | . 2 ⊢ (𝑌 ∈ ℕ0 → (𝜑 → (𝑋↑𝑌) ∈ 𝑆)) |
38 | 1, 37 | mpcom 38 | 1 ⊢ (𝜑 → (𝑋↑𝑌) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 ℕ0cn0 12524 ↑cexp 14099 SubRingcsubrg 20586 ℂfldccnfld 21382 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-seq 14040 df-exp 14100 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-subg 19154 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-subrng 20563 df-subrg 20587 df-cnfld 21383 |
This theorem is referenced by: cnsrplycl 43156 |
Copyright terms: Public domain | W3C validator |