Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnsrexpcl Structured version   Visualization version   GIF version

Theorem cnsrexpcl 40906
Description: Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
cnsrexpcl.s (𝜑𝑆 ∈ (SubRing‘ℂfld))
cnsrexpcl.x (𝜑𝑋𝑆)
cnsrexpcl.y (𝜑𝑌 ∈ ℕ0)
Assertion
Ref Expression
cnsrexpcl (𝜑 → (𝑋𝑌) ∈ 𝑆)

Proof of Theorem cnsrexpcl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnsrexpcl.y . 2 (𝜑𝑌 ∈ ℕ0)
2 oveq2 7263 . . . . 5 (𝑎 = 0 → (𝑋𝑎) = (𝑋↑0))
32eleq1d 2823 . . . 4 (𝑎 = 0 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋↑0) ∈ 𝑆))
43imbi2d 340 . . 3 (𝑎 = 0 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑0) ∈ 𝑆)))
5 oveq2 7263 . . . . 5 (𝑎 = 𝑏 → (𝑋𝑎) = (𝑋𝑏))
65eleq1d 2823 . . . 4 (𝑎 = 𝑏 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋𝑏) ∈ 𝑆))
76imbi2d 340 . . 3 (𝑎 = 𝑏 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋𝑏) ∈ 𝑆)))
8 oveq2 7263 . . . . 5 (𝑎 = (𝑏 + 1) → (𝑋𝑎) = (𝑋↑(𝑏 + 1)))
98eleq1d 2823 . . . 4 (𝑎 = (𝑏 + 1) → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋↑(𝑏 + 1)) ∈ 𝑆))
109imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
11 oveq2 7263 . . . . 5 (𝑎 = 𝑌 → (𝑋𝑎) = (𝑋𝑌))
1211eleq1d 2823 . . . 4 (𝑎 = 𝑌 → ((𝑋𝑎) ∈ 𝑆 ↔ (𝑋𝑌) ∈ 𝑆))
1312imbi2d 340 . . 3 (𝑎 = 𝑌 → ((𝜑 → (𝑋𝑎) ∈ 𝑆) ↔ (𝜑 → (𝑋𝑌) ∈ 𝑆)))
14 cnsrexpcl.s . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘ℂfld))
15 cnfldbas 20514 . . . . . . . 8 ℂ = (Base‘ℂfld)
1615subrgss 19940 . . . . . . 7 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
1714, 16syl 17 . . . . . 6 (𝜑𝑆 ⊆ ℂ)
18 cnsrexpcl.x . . . . . 6 (𝜑𝑋𝑆)
1917, 18sseldd 3918 . . . . 5 (𝜑𝑋 ∈ ℂ)
2019exp0d 13786 . . . 4 (𝜑 → (𝑋↑0) = 1)
21 cnfld1 20535 . . . . . 6 1 = (1r‘ℂfld)
2221subrg1cl 19947 . . . . 5 (𝑆 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑆)
2314, 22syl 17 . . . 4 (𝜑 → 1 ∈ 𝑆)
2420, 23eqeltrd 2839 . . 3 (𝜑 → (𝑋↑0) ∈ 𝑆)
25193ad2ant2 1132 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑋 ∈ ℂ)
26 simp1 1134 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑏 ∈ ℕ0)
2725, 26expp1d 13793 . . . . . 6 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) = ((𝑋𝑏) · 𝑋))
28143ad2ant2 1132 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑆 ∈ (SubRing‘ℂfld))
29 simp3 1136 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋𝑏) ∈ 𝑆)
30183ad2ant2 1132 . . . . . . 7 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → 𝑋𝑆)
31 cnfldmul 20516 . . . . . . . 8 · = (.r‘ℂfld)
3231subrgmcl 19951 . . . . . . 7 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑋𝑏) ∈ 𝑆𝑋𝑆) → ((𝑋𝑏) · 𝑋) ∈ 𝑆)
3328, 29, 30, 32syl3anc 1369 . . . . . 6 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → ((𝑋𝑏) · 𝑋) ∈ 𝑆)
3427, 33eqeltrd 2839 . . . . 5 ((𝑏 ∈ ℕ0𝜑 ∧ (𝑋𝑏) ∈ 𝑆) → (𝑋↑(𝑏 + 1)) ∈ 𝑆)
35343exp 1117 . . . 4 (𝑏 ∈ ℕ0 → (𝜑 → ((𝑋𝑏) ∈ 𝑆 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
3635a2d 29 . . 3 (𝑏 ∈ ℕ0 → ((𝜑 → (𝑋𝑏) ∈ 𝑆) → (𝜑 → (𝑋↑(𝑏 + 1)) ∈ 𝑆)))
374, 7, 10, 13, 24, 36nn0ind 12345 . 2 (𝑌 ∈ ℕ0 → (𝜑 → (𝑋𝑌) ∈ 𝑆))
381, 37mpcom 38 1 (𝜑 → (𝑋𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wss 3883  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  0cn0 12163  cexp 13710  SubRingcsubrg 19935  fldccnfld 20510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-seq 13650  df-exp 13711  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-subg 18667  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-subrg 19937  df-cnfld 20511
This theorem is referenced by:  cnsrplycl  40908
  Copyright terms: Public domain W3C validator