Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoval Structured version   Visualization version   GIF version

Theorem lcoval 48141
Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lcoop.b 𝐵 = (Base‘𝑀)
lcoop.s 𝑆 = (Scalar‘𝑀)
lcoop.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
lcoval ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶𝐵 ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))))
Distinct variable groups:   𝑀,𝑠   𝑅,𝑠   𝑉,𝑠   𝐶,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝑆(𝑠)   𝑋(𝑠)

Proof of Theorem lcoval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 lcoop.b . . . 4 𝐵 = (Base‘𝑀)
2 lcoop.s . . . 4 𝑆 = (Scalar‘𝑀)
3 lcoop.r . . . 4 𝑅 = (Base‘𝑆)
41, 2, 3lcoop 48140 . . 3 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
54eleq2d 2830 . 2 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ 𝐶 ∈ {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}))
6 eqeq1 2744 . . . . 5 (𝑐 = 𝐶 → (𝑐 = (𝑠( linC ‘𝑀)𝑉) ↔ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))
76anbi2d 629 . . . 4 (𝑐 = 𝐶 → ((𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ (𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))
87rexbidv 3185 . . 3 (𝑐 = 𝐶 → (∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))
98elrab 3708 . 2 (𝐶 ∈ {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ↔ (𝐶𝐵 ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))
105, 9bitrdi 287 1 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶𝐵 ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  𝒫 cpw 4622   class class class wbr 5166  cfv 6573  (class class class)co 7448  m cmap 8884   finSupp cfsupp 9431  Basecbs 17258  Scalarcsca 17314  0gc0g 17499   linC clinc 48133   LinCo clinco 48134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-lco 48136
This theorem is referenced by:  lcoel0  48157  lincsumcl  48160  lincscmcl  48161  lincolss  48163  ellcoellss  48164  lcoss  48165  lindslinindsimp1  48186  lindslinindsimp2  48192
  Copyright terms: Public domain W3C validator