| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcoval | Structured version Visualization version GIF version | ||
| Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| lcoop.b | ⊢ 𝐵 = (Base‘𝑀) |
| lcoop.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| lcoop.r | ⊢ 𝑅 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| lcoval | ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcoop.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | lcoop.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 3 | lcoop.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
| 4 | 1, 2, 3 | lcoop 48536 | . . 3 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}) |
| 5 | 4 | eleq2d 2819 | . 2 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ 𝐶 ∈ {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})) |
| 6 | eqeq1 2737 | . . . . 5 ⊢ (𝑐 = 𝐶 → (𝑐 = (𝑠( linC ‘𝑀)𝑉) ↔ 𝐶 = (𝑠( linC ‘𝑀)𝑉))) | |
| 7 | 6 | anbi2d 630 | . . . 4 ⊢ (𝑐 = 𝐶 → ((𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ (𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))) |
| 8 | 7 | rexbidv 3157 | . . 3 ⊢ (𝑐 = 𝐶 → (∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))) |
| 9 | 8 | elrab 3643 | . 2 ⊢ (𝐶 ∈ {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))) |
| 10 | 5, 9 | bitrdi 287 | 1 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 𝒫 cpw 4549 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 finSupp cfsupp 9252 Basecbs 17122 Scalarcsca 17166 0gc0g 17345 linC clinc 48529 LinCo clinco 48530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-lco 48532 |
| This theorem is referenced by: lcoel0 48553 lincsumcl 48556 lincscmcl 48557 lincolss 48559 ellcoellss 48560 lcoss 48561 lindslinindsimp1 48582 lindslinindsimp2 48588 |
| Copyright terms: Public domain | W3C validator |