Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoval Structured version   Visualization version   GIF version

Theorem lcoval 47181
Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lcoop.b 𝐡 = (Baseβ€˜π‘€)
lcoop.s 𝑆 = (Scalarβ€˜π‘€)
lcoop.r 𝑅 = (Baseβ€˜π‘†)
Assertion
Ref Expression
lcoval ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝐢 ∈ (𝑀 LinCo 𝑉) ↔ (𝐢 ∈ 𝐡 ∧ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜π‘†) ∧ 𝐢 = (𝑠( linC β€˜π‘€)𝑉)))))
Distinct variable groups:   𝑀,𝑠   𝑅,𝑠   𝑉,𝑠   𝐢,𝑠
Allowed substitution hints:   𝐡(𝑠)   𝑆(𝑠)   𝑋(𝑠)

Proof of Theorem lcoval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 lcoop.b . . . 4 𝐡 = (Baseβ€˜π‘€)
2 lcoop.s . . . 4 𝑆 = (Scalarβ€˜π‘€)
3 lcoop.r . . . 4 𝑅 = (Baseβ€˜π‘†)
41, 2, 3lcoop 47180 . . 3 ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝑀 LinCo 𝑉) = {𝑐 ∈ 𝐡 ∣ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜π‘†) ∧ 𝑐 = (𝑠( linC β€˜π‘€)𝑉))})
54eleq2d 2819 . 2 ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝐢 ∈ (𝑀 LinCo 𝑉) ↔ 𝐢 ∈ {𝑐 ∈ 𝐡 ∣ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜π‘†) ∧ 𝑐 = (𝑠( linC β€˜π‘€)𝑉))}))
6 eqeq1 2736 . . . . 5 (𝑐 = 𝐢 β†’ (𝑐 = (𝑠( linC β€˜π‘€)𝑉) ↔ 𝐢 = (𝑠( linC β€˜π‘€)𝑉)))
76anbi2d 629 . . . 4 (𝑐 = 𝐢 β†’ ((𝑠 finSupp (0gβ€˜π‘†) ∧ 𝑐 = (𝑠( linC β€˜π‘€)𝑉)) ↔ (𝑠 finSupp (0gβ€˜π‘†) ∧ 𝐢 = (𝑠( linC β€˜π‘€)𝑉))))
87rexbidv 3178 . . 3 (𝑐 = 𝐢 β†’ (βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜π‘†) ∧ 𝑐 = (𝑠( linC β€˜π‘€)𝑉)) ↔ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜π‘†) ∧ 𝐢 = (𝑠( linC β€˜π‘€)𝑉))))
98elrab 3683 . 2 (𝐢 ∈ {𝑐 ∈ 𝐡 ∣ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜π‘†) ∧ 𝑐 = (𝑠( linC β€˜π‘€)𝑉))} ↔ (𝐢 ∈ 𝐡 ∧ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜π‘†) ∧ 𝐢 = (𝑠( linC β€˜π‘€)𝑉))))
105, 9bitrdi 286 1 ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐡) β†’ (𝐢 ∈ (𝑀 LinCo 𝑉) ↔ (𝐢 ∈ 𝐡 ∧ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜π‘†) ∧ 𝐢 = (𝑠( linC β€˜π‘€)𝑉)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432  π’« cpw 4602   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7411   ↑m cmap 8822   finSupp cfsupp 9363  Basecbs 17148  Scalarcsca 17204  0gc0g 17389   linC clinc 47173   LinCo clinco 47174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-lco 47176
This theorem is referenced by:  lcoel0  47197  lincsumcl  47200  lincscmcl  47201  lincolss  47203  ellcoellss  47204  lcoss  47205  lindslinindsimp1  47226  lindslinindsimp2  47232
  Copyright terms: Public domain W3C validator