Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoval Structured version   Visualization version   GIF version

Theorem lcoval 48388
Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lcoop.b 𝐵 = (Base‘𝑀)
lcoop.s 𝑆 = (Scalar‘𝑀)
lcoop.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
lcoval ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶𝐵 ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))))
Distinct variable groups:   𝑀,𝑠   𝑅,𝑠   𝑉,𝑠   𝐶,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝑆(𝑠)   𝑋(𝑠)

Proof of Theorem lcoval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 lcoop.b . . . 4 𝐵 = (Base‘𝑀)
2 lcoop.s . . . 4 𝑆 = (Scalar‘𝑀)
3 lcoop.r . . . 4 𝑅 = (Base‘𝑆)
41, 2, 3lcoop 48387 . . 3 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
54eleq2d 2820 . 2 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ 𝐶 ∈ {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}))
6 eqeq1 2739 . . . . 5 (𝑐 = 𝐶 → (𝑐 = (𝑠( linC ‘𝑀)𝑉) ↔ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))
76anbi2d 630 . . . 4 (𝑐 = 𝐶 → ((𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ (𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))
87rexbidv 3164 . . 3 (𝑐 = 𝐶 → (∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))
98elrab 3671 . 2 (𝐶 ∈ {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ↔ (𝐶𝐵 ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))
105, 9bitrdi 287 1 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶𝐵 ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3060  {crab 3415  𝒫 cpw 4575   class class class wbr 5119  cfv 6531  (class class class)co 7405  m cmap 8840   finSupp cfsupp 9373  Basecbs 17228  Scalarcsca 17274  0gc0g 17453   linC clinc 48380   LinCo clinco 48381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-lco 48383
This theorem is referenced by:  lcoel0  48404  lincsumcl  48407  lincscmcl  48408  lincolss  48410  ellcoellss  48411  lcoss  48412  lindslinindsimp1  48433  lindslinindsimp2  48439
  Copyright terms: Public domain W3C validator