| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcoval | Structured version Visualization version GIF version | ||
| Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| lcoop.b | ⊢ 𝐵 = (Base‘𝑀) |
| lcoop.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| lcoop.r | ⊢ 𝑅 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| lcoval | ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcoop.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | lcoop.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 3 | lcoop.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
| 4 | 1, 2, 3 | lcoop 48328 | . . 3 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}) |
| 5 | 4 | eleq2d 2827 | . 2 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ 𝐶 ∈ {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})) |
| 6 | eqeq1 2741 | . . . . 5 ⊢ (𝑐 = 𝐶 → (𝑐 = (𝑠( linC ‘𝑀)𝑉) ↔ 𝐶 = (𝑠( linC ‘𝑀)𝑉))) | |
| 7 | 6 | anbi2d 630 | . . . 4 ⊢ (𝑐 = 𝐶 → ((𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ (𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))) |
| 8 | 7 | rexbidv 3179 | . . 3 ⊢ (𝑐 = 𝐶 → (∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))) |
| 9 | 8 | elrab 3692 | . 2 ⊢ (𝐶 ∈ {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))) |
| 10 | 5, 9 | bitrdi 287 | 1 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 {crab 3436 𝒫 cpw 4600 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 finSupp cfsupp 9401 Basecbs 17247 Scalarcsca 17300 0gc0g 17484 linC clinc 48321 LinCo clinco 48322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-lco 48324 |
| This theorem is referenced by: lcoel0 48345 lincsumcl 48348 lincscmcl 48349 lincolss 48351 ellcoellss 48352 lcoss 48353 lindslinindsimp1 48374 lindslinindsimp2 48380 |
| Copyright terms: Public domain | W3C validator |