![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcoval | Structured version Visualization version GIF version |
Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
Ref | Expression |
---|---|
lcoop.b | β’ π΅ = (Baseβπ) |
lcoop.s | β’ π = (Scalarβπ) |
lcoop.r | β’ π = (Baseβπ) |
Ref | Expression |
---|---|
lcoval | β’ ((π β π β§ π β π« π΅) β (πΆ β (π LinCo π) β (πΆ β π΅ β§ βπ β (π βm π)(π finSupp (0gβπ) β§ πΆ = (π ( linC βπ)π))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcoop.b | . . . 4 β’ π΅ = (Baseβπ) | |
2 | lcoop.s | . . . 4 β’ π = (Scalarβπ) | |
3 | lcoop.r | . . . 4 β’ π = (Baseβπ) | |
4 | 1, 2, 3 | lcoop 47180 | . . 3 β’ ((π β π β§ π β π« π΅) β (π LinCo π) = {π β π΅ β£ βπ β (π βm π)(π finSupp (0gβπ) β§ π = (π ( linC βπ)π))}) |
5 | 4 | eleq2d 2819 | . 2 β’ ((π β π β§ π β π« π΅) β (πΆ β (π LinCo π) β πΆ β {π β π΅ β£ βπ β (π βm π)(π finSupp (0gβπ) β§ π = (π ( linC βπ)π))})) |
6 | eqeq1 2736 | . . . . 5 β’ (π = πΆ β (π = (π ( linC βπ)π) β πΆ = (π ( linC βπ)π))) | |
7 | 6 | anbi2d 629 | . . . 4 β’ (π = πΆ β ((π finSupp (0gβπ) β§ π = (π ( linC βπ)π)) β (π finSupp (0gβπ) β§ πΆ = (π ( linC βπ)π)))) |
8 | 7 | rexbidv 3178 | . . 3 β’ (π = πΆ β (βπ β (π βm π)(π finSupp (0gβπ) β§ π = (π ( linC βπ)π)) β βπ β (π βm π)(π finSupp (0gβπ) β§ πΆ = (π ( linC βπ)π)))) |
9 | 8 | elrab 3683 | . 2 β’ (πΆ β {π β π΅ β£ βπ β (π βm π)(π finSupp (0gβπ) β§ π = (π ( linC βπ)π))} β (πΆ β π΅ β§ βπ β (π βm π)(π finSupp (0gβπ) β§ πΆ = (π ( linC βπ)π)))) |
10 | 5, 9 | bitrdi 286 | 1 β’ ((π β π β§ π β π« π΅) β (πΆ β (π LinCo π) β (πΆ β π΅ β§ βπ β (π βm π)(π finSupp (0gβπ) β§ πΆ = (π ( linC βπ)π))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwrex 3070 {crab 3432 π« cpw 4602 class class class wbr 5148 βcfv 6543 (class class class)co 7411 βm cmap 8822 finSupp cfsupp 9363 Basecbs 17148 Scalarcsca 17204 0gc0g 17389 linC clinc 47173 LinCo clinco 47174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-lco 47176 |
This theorem is referenced by: lcoel0 47197 lincsumcl 47200 lincscmcl 47201 lincolss 47203 ellcoellss 47204 lcoss 47205 lindslinindsimp1 47226 lindslinindsimp2 47232 |
Copyright terms: Public domain | W3C validator |