Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcoval Structured version   Visualization version   GIF version

Theorem lcoval 48257
Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lcoop.b 𝐵 = (Base‘𝑀)
lcoop.s 𝑆 = (Scalar‘𝑀)
lcoop.r 𝑅 = (Base‘𝑆)
Assertion
Ref Expression
lcoval ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶𝐵 ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))))
Distinct variable groups:   𝑀,𝑠   𝑅,𝑠   𝑉,𝑠   𝐶,𝑠
Allowed substitution hints:   𝐵(𝑠)   𝑆(𝑠)   𝑋(𝑠)

Proof of Theorem lcoval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 lcoop.b . . . 4 𝐵 = (Base‘𝑀)
2 lcoop.s . . . 4 𝑆 = (Scalar‘𝑀)
3 lcoop.r . . . 4 𝑅 = (Base‘𝑆)
41, 2, 3lcoop 48256 . . 3 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})
54eleq2d 2824 . 2 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ 𝐶 ∈ {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}))
6 eqeq1 2738 . . . . 5 (𝑐 = 𝐶 → (𝑐 = (𝑠( linC ‘𝑀)𝑉) ↔ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))
76anbi2d 630 . . . 4 (𝑐 = 𝐶 → ((𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ (𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))
87rexbidv 3176 . . 3 (𝑐 = 𝐶 → (∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))
98elrab 3694 . 2 (𝐶 ∈ {𝑐𝐵 ∣ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ↔ (𝐶𝐵 ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))
105, 9bitrdi 287 1 ((𝑀𝑋𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶𝐵 ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wrex 3067  {crab 3432  𝒫 cpw 4604   class class class wbr 5147  cfv 6562  (class class class)co 7430  m cmap 8864   finSupp cfsupp 9398  Basecbs 17244  Scalarcsca 17300  0gc0g 17485   linC clinc 48249   LinCo clinco 48250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-lco 48252
This theorem is referenced by:  lcoel0  48273  lincsumcl  48276  lincscmcl  48277  lincolss  48279  ellcoellss  48280  lcoss  48281  lindslinindsimp1  48302  lindslinindsimp2  48308
  Copyright terms: Public domain W3C validator