| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcoval | Structured version Visualization version GIF version | ||
| Description: The value of a linear combination. (Contributed by AV, 5-Apr-2019.) (Revised by AV, 28-Jul-2019.) |
| Ref | Expression |
|---|---|
| lcoop.b | ⊢ 𝐵 = (Base‘𝑀) |
| lcoop.s | ⊢ 𝑆 = (Scalar‘𝑀) |
| lcoop.r | ⊢ 𝑅 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| lcoval | ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcoop.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | lcoop.s | . . . 4 ⊢ 𝑆 = (Scalar‘𝑀) | |
| 3 | lcoop.r | . . . 4 ⊢ 𝑅 = (Base‘𝑆) | |
| 4 | 1, 2, 3 | lcoop 48397 | . . 3 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) = {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))}) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ 𝐶 ∈ {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))})) |
| 6 | eqeq1 2733 | . . . . 5 ⊢ (𝑐 = 𝐶 → (𝑐 = (𝑠( linC ‘𝑀)𝑉) ↔ 𝐶 = (𝑠( linC ‘𝑀)𝑉))) | |
| 7 | 6 | anbi2d 630 | . . . 4 ⊢ (𝑐 = 𝐶 → ((𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ (𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))) |
| 8 | 7 | rexbidv 3153 | . . 3 ⊢ (𝑐 = 𝐶 → (∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉)) ↔ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))) |
| 9 | 8 | elrab 3650 | . 2 ⊢ (𝐶 ∈ {𝑐 ∈ 𝐵 ∣ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝑐 = (𝑠( linC ‘𝑀)𝑉))} ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉)))) |
| 10 | 5, 9 | bitrdi 287 | 1 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑉 ∈ 𝒫 𝐵) → (𝐶 ∈ (𝑀 LinCo 𝑉) ↔ (𝐶 ∈ 𝐵 ∧ ∃𝑠 ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0g‘𝑆) ∧ 𝐶 = (𝑠( linC ‘𝑀)𝑉))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3396 𝒫 cpw 4553 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 finSupp cfsupp 9270 Basecbs 17138 Scalarcsca 17182 0gc0g 17361 linC clinc 48390 LinCo clinco 48391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-lco 48393 |
| This theorem is referenced by: lcoel0 48414 lincsumcl 48417 lincscmcl 48418 lincolss 48420 ellcoellss 48421 lcoss 48422 lindslinindsimp1 48443 lindslinindsimp2 48449 |
| Copyright terms: Public domain | W3C validator |