Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincscmcl Structured version   Visualization version   GIF version

Theorem lincscmcl 47113
Description: The multiplication of a linear combination with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 11-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincscmcl.s Β· = ( ·𝑠 β€˜π‘€)
lincscmcl.r 𝑅 = (Baseβ€˜(Scalarβ€˜π‘€))
Assertion
Ref Expression
lincscmcl (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅 ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) β†’ (𝐢 Β· 𝐷) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lincscmcl
Dummy variables 𝑠 𝑣 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
2 eqid 2733 . . . . 5 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
3 lincscmcl.r . . . . 5 𝑅 = (Baseβ€˜(Scalarβ€˜π‘€))
41, 2, 3lcoval 47093 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))))
54adantr 482 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))))
6 simpl 484 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑀 ∈ LMod)
76ad2antrr 725 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ 𝑀 ∈ LMod)
8 simpr 486 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ 𝐢 ∈ 𝑅)
98adantr 482 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ 𝐢 ∈ 𝑅)
10 simprl 770 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ 𝐷 ∈ (Baseβ€˜π‘€))
11 lincscmcl.s . . . . . . 7 Β· = ( ·𝑠 β€˜π‘€)
121, 2, 11, 3lmodvscl 20489 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐢 ∈ 𝑅 ∧ 𝐷 ∈ (Baseβ€˜π‘€)) β†’ (𝐢 Β· 𝐷) ∈ (Baseβ€˜π‘€))
137, 9, 10, 12syl3anc 1372 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ (𝐢 Β· 𝐷) ∈ (Baseβ€˜π‘€))
142lmodring 20479 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ LMod β†’ (Scalarβ€˜π‘€) ∈ Ring)
1514ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ (Scalarβ€˜π‘€) ∈ Ring)
1615adantl 483 . . . . . . . . . . . . . . 15 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ (Scalarβ€˜π‘€) ∈ Ring)
1716adantr 482 . . . . . . . . . . . . . 14 (((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) ∧ 𝑣 ∈ 𝑉) β†’ (Scalarβ€˜π‘€) ∈ Ring)
188adantl 483 . . . . . . . . . . . . . . 15 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ 𝐢 ∈ 𝑅)
1918adantr 482 . . . . . . . . . . . . . 14 (((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) ∧ 𝑣 ∈ 𝑉) β†’ 𝐢 ∈ 𝑅)
20 elmapi 8843 . . . . . . . . . . . . . . . . . 18 (π‘₯ ∈ (𝑅 ↑m 𝑉) β†’ π‘₯:π‘‰βŸΆπ‘…)
21 ffvelcdm 7084 . . . . . . . . . . . . . . . . . . 19 ((π‘₯:π‘‰βŸΆπ‘… ∧ 𝑣 ∈ 𝑉) β†’ (π‘₯β€˜π‘£) ∈ 𝑅)
2221ex 414 . . . . . . . . . . . . . . . . . 18 (π‘₯:π‘‰βŸΆπ‘… β†’ (𝑣 ∈ 𝑉 β†’ (π‘₯β€˜π‘£) ∈ 𝑅))
2320, 22syl 17 . . . . . . . . . . . . . . . . 17 (π‘₯ ∈ (𝑅 ↑m 𝑉) β†’ (𝑣 ∈ 𝑉 β†’ (π‘₯β€˜π‘£) ∈ 𝑅))
2423adantr 482 . . . . . . . . . . . . . . . 16 ((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (𝑣 ∈ 𝑉 β†’ (π‘₯β€˜π‘£) ∈ 𝑅))
2524ad2antrr 725 . . . . . . . . . . . . . . 15 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ (𝑣 ∈ 𝑉 β†’ (π‘₯β€˜π‘£) ∈ 𝑅))
2625imp 408 . . . . . . . . . . . . . 14 (((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) ∧ 𝑣 ∈ 𝑉) β†’ (π‘₯β€˜π‘£) ∈ 𝑅)
27 eqid 2733 . . . . . . . . . . . . . . 15 (.rβ€˜(Scalarβ€˜π‘€)) = (.rβ€˜(Scalarβ€˜π‘€))
283, 27ringcl 20073 . . . . . . . . . . . . . 14 (((Scalarβ€˜π‘€) ∈ Ring ∧ 𝐢 ∈ 𝑅 ∧ (π‘₯β€˜π‘£) ∈ 𝑅) β†’ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£)) ∈ 𝑅)
2917, 19, 26, 28syl3anc 1372 . . . . . . . . . . . . 13 (((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) ∧ 𝑣 ∈ 𝑉) β†’ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£)) ∈ 𝑅)
3029fmpttd 7115 . . . . . . . . . . . 12 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))):π‘‰βŸΆπ‘…)
313fvexi 6906 . . . . . . . . . . . . 13 𝑅 ∈ V
32 simpr 486 . . . . . . . . . . . . . . 15 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
3332adantr 482 . . . . . . . . . . . . . 14 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
3433adantl 483 . . . . . . . . . . . . 13 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€))
35 elmapg 8833 . . . . . . . . . . . . 13 ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) ∈ (𝑅 ↑m 𝑉) ↔ (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))):π‘‰βŸΆπ‘…))
3631, 34, 35sylancr 588 . . . . . . . . . . . 12 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) ∈ (𝑅 ↑m 𝑉) ↔ (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))):π‘‰βŸΆπ‘…))
3730, 36mpbird 257 . . . . . . . . . . 11 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) ∈ (𝑅 ↑m 𝑉))
3815, 33, 83jca 1129 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ ((Scalarβ€˜π‘€) ∈ Ring ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ 𝐢 ∈ 𝑅))
3938adantl 483 . . . . . . . . . . . 12 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ ((Scalarβ€˜π‘€) ∈ Ring ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ 𝐢 ∈ 𝑅))
40 simpl 484 . . . . . . . . . . . . 13 ((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ π‘₯ ∈ (𝑅 ↑m 𝑉))
4140ad2antrr 725 . . . . . . . . . . . 12 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ π‘₯ ∈ (𝑅 ↑m 𝑉))
42 simprl 770 . . . . . . . . . . . . 13 ((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)))
4342ad2antrr 725 . . . . . . . . . . . 12 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)))
443rmfsupp 47050 . . . . . . . . . . . 12 ((((Scalarβ€˜π‘€) ∈ Ring ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€) ∧ 𝐢 ∈ 𝑅) ∧ π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) finSupp (0gβ€˜(Scalarβ€˜π‘€)))
4539, 41, 43, 44syl3anc 1372 . . . . . . . . . . 11 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) finSupp (0gβ€˜(Scalarβ€˜π‘€)))
46 oveq2 7417 . . . . . . . . . . . . . . 15 (𝐷 = (π‘₯( linC β€˜π‘€)𝑉) β†’ (𝐢 Β· 𝐷) = (𝐢 Β· (π‘₯( linC β€˜π‘€)𝑉)))
4746adantl 483 . . . . . . . . . . . . . 14 ((π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)) β†’ (𝐢 Β· 𝐷) = (𝐢 Β· (π‘₯( linC β€˜π‘€)𝑉)))
4847adantl 483 . . . . . . . . . . . . 13 ((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (𝐢 Β· 𝐷) = (𝐢 Β· (π‘₯( linC β€˜π‘€)𝑉)))
4948ad2antrr 725 . . . . . . . . . . . 12 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ (𝐢 Β· 𝐷) = (𝐢 Β· (π‘₯( linC β€˜π‘€)𝑉)))
50 simprl 770 . . . . . . . . . . . . 13 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)))
5140adantr 482 . . . . . . . . . . . . . 14 (((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) β†’ π‘₯ ∈ (𝑅 ↑m 𝑉))
5251, 8anim12i 614 . . . . . . . . . . . . 13 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ (π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ 𝐢 ∈ 𝑅))
53 eqid 2733 . . . . . . . . . . . . . 14 (π‘₯( linC β€˜π‘€)𝑉) = (π‘₯( linC β€˜π‘€)𝑉)
54 eqid 2733 . . . . . . . . . . . . . 14 (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) = (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£)))
5511, 27, 53, 3, 54lincscm 47111 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ (π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ 𝐢 ∈ 𝑅) ∧ π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€))) β†’ (𝐢 Β· (π‘₯( linC β€˜π‘€)𝑉)) = ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£)))( linC β€˜π‘€)𝑉))
5650, 52, 43, 55syl3anc 1372 . . . . . . . . . . . 12 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ (𝐢 Β· (π‘₯( linC β€˜π‘€)𝑉)) = ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£)))( linC β€˜π‘€)𝑉))
5749, 56eqtrd 2773 . . . . . . . . . . 11 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ (𝐢 Β· 𝐷) = ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£)))( linC β€˜π‘€)𝑉))
58 breq1 5152 . . . . . . . . . . . . 13 (𝑠 = (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) β†’ (𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ↔ (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) finSupp (0gβ€˜(Scalarβ€˜π‘€))))
59 oveq1 7416 . . . . . . . . . . . . . 14 (𝑠 = (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) β†’ (𝑠( linC β€˜π‘€)𝑉) = ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£)))( linC β€˜π‘€)𝑉))
6059eqeq2d 2744 . . . . . . . . . . . . 13 (𝑠 = (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) β†’ ((𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉) ↔ (𝐢 Β· 𝐷) = ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£)))( linC β€˜π‘€)𝑉)))
6158, 60anbi12d 632 . . . . . . . . . . . 12 (𝑠 = (𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) β†’ ((𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉)) ↔ ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£)))( linC β€˜π‘€)𝑉))))
6261rspcev 3613 . . . . . . . . . . 11 (((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) ∈ (𝑅 ↑m 𝑉) ∧ ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£))) finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = ((𝑣 ∈ 𝑉 ↦ (𝐢(.rβ€˜(Scalarβ€˜π‘€))(π‘₯β€˜π‘£)))( linC β€˜π‘€)𝑉))) β†’ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))
6337, 45, 57, 62syl12anc 836 . . . . . . . . . 10 ((((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅)) β†’ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))
6463ex 414 . . . . . . . . 9 (((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) ∧ 𝐷 ∈ (Baseβ€˜π‘€)) β†’ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉))))
6564ex 414 . . . . . . . 8 ((π‘₯ ∈ (𝑅 ↑m 𝑉) ∧ (π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (𝐷 ∈ (Baseβ€˜π‘€) β†’ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))))
6665rexlimiva 3148 . . . . . . 7 (βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)) β†’ (𝐷 ∈ (Baseβ€˜π‘€) β†’ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))))
6766impcom 409 . . . . . 6 ((𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉))))
6867impcom 409 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))
691, 2, 3lcoval 47093 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) β†’ ((𝐢 Β· 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐢 Β· 𝐷) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))))
7069ad2antrr 725 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ ((𝐢 Β· 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐢 Β· 𝐷) ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘  ∈ (𝑅 ↑m 𝑉)(𝑠 finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ (𝐢 Β· 𝐷) = (𝑠( linC β€˜π‘€)𝑉)))))
7113, 68, 70mpbir2and 712 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) ∧ (𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉)))) β†’ (𝐢 Β· 𝐷) ∈ (𝑀 LinCo 𝑉))
7271ex 414 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ ((𝐷 ∈ (Baseβ€˜π‘€) ∧ βˆƒπ‘₯ ∈ (𝑅 ↑m 𝑉)(π‘₯ finSupp (0gβ€˜(Scalarβ€˜π‘€)) ∧ 𝐷 = (π‘₯( linC β€˜π‘€)𝑉))) β†’ (𝐢 Β· 𝐷) ∈ (𝑀 LinCo 𝑉)))
735, 72sylbid 239 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅) β†’ (𝐷 ∈ (𝑀 LinCo 𝑉) β†’ (𝐢 Β· 𝐷) ∈ (𝑀 LinCo 𝑉)))
74733impia 1118 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Baseβ€˜π‘€)) ∧ 𝐢 ∈ 𝑅 ∧ 𝐷 ∈ (𝑀 LinCo 𝑉)) β†’ (𝐢 Β· 𝐷) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  Vcvv 3475  π’« cpw 4603   class class class wbr 5149   ↦ cmpt 5232  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820   finSupp cfsupp 9361  Basecbs 17144  .rcmulr 17198  Scalarcsca 17200   ·𝑠 cvsca 17201  0gc0g 17385  Ringcrg 20056  LModclmod 20471   linC clinc 47085   LinCo clinco 47086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-seq 13967  df-hash 14291  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-plusg 17210  df-0g 17387  df-gsum 17388  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-grp 18822  df-minusg 18823  df-ghm 19090  df-cntz 19181  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-lmod 20473  df-linc 47087  df-lco 47088
This theorem is referenced by:  lincsumscmcl  47114
  Copyright terms: Public domain W3C validator