Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincscmcl Structured version   Visualization version   GIF version

Theorem lincscmcl 48161
Description: The multiplication of a linear combination with a scalar is a linear combination, see also the proof in [Lang] p. 129. (Contributed by AV, 11-Apr-2019.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lincscmcl.s · = ( ·𝑠𝑀)
lincscmcl.r 𝑅 = (Base‘(Scalar‘𝑀))
Assertion
Ref Expression
lincscmcl (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉))

Proof of Theorem lincscmcl
Dummy variables 𝑠 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2740 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
3 lincscmcl.r . . . . 5 𝑅 = (Base‘(Scalar‘𝑀))
41, 2, 3lcoval 48141 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))))
54adantr 480 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → (𝐷 ∈ (𝑀 LinCo 𝑉) ↔ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))))
6 simpl 482 . . . . . . 7 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑀 ∈ LMod)
76ad2antrr 725 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝑀 ∈ LMod)
8 simpr 484 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → 𝐶𝑅)
98adantr 480 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐶𝑅)
10 simprl 770 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → 𝐷 ∈ (Base‘𝑀))
11 lincscmcl.s . . . . . . 7 · = ( ·𝑠𝑀)
121, 2, 11, 3lmodvscl 20898 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝐶𝑅𝐷 ∈ (Base‘𝑀)) → (𝐶 · 𝐷) ∈ (Base‘𝑀))
137, 9, 10, 12syl3anc 1371 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 · 𝐷) ∈ (Base‘𝑀))
142lmodring 20888 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
1514ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → (Scalar‘𝑀) ∈ Ring)
1615adantl 481 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (Scalar‘𝑀) ∈ Ring)
1716adantr 480 . . . . . . . . . . . . . 14 (((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) ∧ 𝑣𝑉) → (Scalar‘𝑀) ∈ Ring)
188adantl 481 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → 𝐶𝑅)
1918adantr 480 . . . . . . . . . . . . . 14 (((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) ∧ 𝑣𝑉) → 𝐶𝑅)
20 elmapi 8907 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑅m 𝑉) → 𝑥:𝑉𝑅)
21 ffvelcdm 7115 . . . . . . . . . . . . . . . . . . 19 ((𝑥:𝑉𝑅𝑣𝑉) → (𝑥𝑣) ∈ 𝑅)
2221ex 412 . . . . . . . . . . . . . . . . . 18 (𝑥:𝑉𝑅 → (𝑣𝑉 → (𝑥𝑣) ∈ 𝑅))
2320, 22syl 17 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑅m 𝑉) → (𝑣𝑉 → (𝑥𝑣) ∈ 𝑅))
2423adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝑣𝑉 → (𝑥𝑣) ∈ 𝑅))
2524ad2antrr 725 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑣𝑉 → (𝑥𝑣) ∈ 𝑅))
2625imp 406 . . . . . . . . . . . . . 14 (((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) ∧ 𝑣𝑉) → (𝑥𝑣) ∈ 𝑅)
27 eqid 2740 . . . . . . . . . . . . . . 15 (.r‘(Scalar‘𝑀)) = (.r‘(Scalar‘𝑀))
283, 27ringcl 20277 . . . . . . . . . . . . . 14 (((Scalar‘𝑀) ∈ Ring ∧ 𝐶𝑅 ∧ (𝑥𝑣) ∈ 𝑅) → (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)) ∈ 𝑅)
2917, 19, 26, 28syl3anc 1371 . . . . . . . . . . . . 13 (((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) ∧ 𝑣𝑉) → (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)) ∈ 𝑅)
3029fmpttd 7149 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))):𝑉𝑅)
313fvexi 6934 . . . . . . . . . . . . 13 𝑅 ∈ V
32 simpr 484 . . . . . . . . . . . . . . 15 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
3332adantr 480 . . . . . . . . . . . . . 14 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → 𝑉 ∈ 𝒫 (Base‘𝑀))
3433adantl 481 . . . . . . . . . . . . 13 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
35 elmapg 8897 . . . . . . . . . . . . 13 ((𝑅 ∈ V ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) ∈ (𝑅m 𝑉) ↔ (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))):𝑉𝑅))
3631, 34, 35sylancr 586 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) ∈ (𝑅m 𝑉) ↔ (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))):𝑉𝑅))
3730, 36mpbird 257 . . . . . . . . . . 11 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) ∈ (𝑅m 𝑉))
3815, 33, 83jca 1128 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ((Scalar‘𝑀) ∈ Ring ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐶𝑅))
3938adantl 481 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → ((Scalar‘𝑀) ∈ Ring ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐶𝑅))
40 simpl 482 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 ∈ (𝑅m 𝑉))
4140ad2antrr 725 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → 𝑥 ∈ (𝑅m 𝑉))
42 simprl 770 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → 𝑥 finSupp (0g‘(Scalar‘𝑀)))
4342ad2antrr 725 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → 𝑥 finSupp (0g‘(Scalar‘𝑀)))
443rmfsupp 48099 . . . . . . . . . . . 12 ((((Scalar‘𝑀) ∈ Ring ∧ 𝑉 ∈ 𝒫 (Base‘𝑀) ∧ 𝐶𝑅) ∧ 𝑥 ∈ (𝑅m 𝑉) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))) → (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) finSupp (0g‘(Scalar‘𝑀)))
4539, 41, 43, 44syl3anc 1371 . . . . . . . . . . 11 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) finSupp (0g‘(Scalar‘𝑀)))
46 oveq2 7456 . . . . . . . . . . . . . . 15 (𝐷 = (𝑥( linC ‘𝑀)𝑉) → (𝐶 · 𝐷) = (𝐶 · (𝑥( linC ‘𝑀)𝑉)))
4746adantl 481 . . . . . . . . . . . . . 14 ((𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐶 · 𝐷) = (𝐶 · (𝑥( linC ‘𝑀)𝑉)))
4847adantl 481 . . . . . . . . . . . . 13 ((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 · 𝐷) = (𝐶 · (𝑥( linC ‘𝑀)𝑉)))
4948ad2antrr 725 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝐶 · 𝐷) = (𝐶 · (𝑥( linC ‘𝑀)𝑉)))
50 simprl 770 . . . . . . . . . . . . 13 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)))
5140adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) → 𝑥 ∈ (𝑅m 𝑉))
5251, 8anim12i 612 . . . . . . . . . . . . 13 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝑥 ∈ (𝑅m 𝑉) ∧ 𝐶𝑅))
53 eqid 2740 . . . . . . . . . . . . . 14 (𝑥( linC ‘𝑀)𝑉) = (𝑥( linC ‘𝑀)𝑉)
54 eqid 2740 . . . . . . . . . . . . . 14 (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) = (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))
5511, 27, 53, 3, 54lincscm 48159 . . . . . . . . . . . . 13 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑥 ∈ (𝑅m 𝑉) ∧ 𝐶𝑅) ∧ 𝑥 finSupp (0g‘(Scalar‘𝑀))) → (𝐶 · (𝑥( linC ‘𝑀)𝑉)) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))
5650, 52, 43, 55syl3anc 1371 . . . . . . . . . . . 12 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝐶 · (𝑥( linC ‘𝑀)𝑉)) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))
5749, 56eqtrd 2780 . . . . . . . . . . 11 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → (𝐶 · 𝐷) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))
58 breq1 5169 . . . . . . . . . . . . 13 (𝑠 = (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) → (𝑠 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) finSupp (0g‘(Scalar‘𝑀))))
59 oveq1 7455 . . . . . . . . . . . . . 14 (𝑠 = (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) → (𝑠( linC ‘𝑀)𝑉) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))
6059eqeq2d 2751 . . . . . . . . . . . . 13 (𝑠 = (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) → ((𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉) ↔ (𝐶 · 𝐷) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉)))
6158, 60anbi12d 631 . . . . . . . . . . . 12 (𝑠 = (𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) → ((𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)) ↔ ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))))
6261rspcev 3635 . . . . . . . . . . 11 (((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) ∈ (𝑅m 𝑉) ∧ ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣))) finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = ((𝑣𝑉 ↦ (𝐶(.r‘(Scalar‘𝑀))(𝑥𝑣)))( linC ‘𝑀)𝑉))) → ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
6337, 45, 57, 62syl12anc 836 . . . . . . . . . 10 ((((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) ∧ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅)) → ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
6463ex 412 . . . . . . . . 9 (((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) ∧ 𝐷 ∈ (Base‘𝑀)) → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉))))
6564ex 412 . . . . . . . 8 ((𝑥 ∈ (𝑅m 𝑉) ∧ (𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐷 ∈ (Base‘𝑀) → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6665rexlimiva 3153 . . . . . . 7 (∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)) → (𝐷 ∈ (Base‘𝑀) → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
6766impcom 407 . . . . . 6 ((𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉))))
6867impcom 407 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))
691, 2, 3lcoval 48141 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ((𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 · 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7069ad2antrr 725 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → ((𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉) ↔ ((𝐶 · 𝐷) ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ (𝑅m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝐶 · 𝐷) = (𝑠( linC ‘𝑀)𝑉)))))
7113, 68, 70mpbir2and 712 . . . 4 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) ∧ (𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉)))) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉))
7271ex 412 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → ((𝐷 ∈ (Base‘𝑀) ∧ ∃𝑥 ∈ (𝑅m 𝑉)(𝑥 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝐷 = (𝑥( linC ‘𝑀)𝑉))) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉)))
735, 72sylbid 240 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅) → (𝐷 ∈ (𝑀 LinCo 𝑉) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉)))
74733impia 1117 1 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ 𝐶𝑅𝐷 ∈ (𝑀 LinCo 𝑉)) → (𝐶 · 𝐷) ∈ (𝑀 LinCo 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  Vcvv 3488  𝒫 cpw 4622   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884   finSupp cfsupp 9431  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  Ringcrg 20260  LModclmod 20880   linC clinc 48133   LinCo clinco 48134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lmod 20882  df-linc 48135  df-lco 48136
This theorem is referenced by:  lincsumscmcl  48162
  Copyright terms: Public domain W3C validator