Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellcoellss Structured version   Visualization version   GIF version

Theorem ellcoellss 48424
Description: Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
ellcoellss ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥𝑆)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆   𝑥,𝑉

Proof of Theorem ellcoellss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑀 ∈ LMod)
2 eqid 2729 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2729 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
42, 3lssss 20842 . . . . . 6 (𝑆 ∈ (LSubSp‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
543ad2ant2 1134 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑆 ⊆ (Base‘𝑀))
6 sstr 3955 . . . . . . . 8 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀))
7 fvex 6871 . . . . . . . . . 10 (Base‘𝑀) ∈ V
87ssex 5276 . . . . . . . . 9 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ V)
9 elpwg 4566 . . . . . . . . . 10 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
109biimprd 248 . . . . . . . . 9 (𝑉 ∈ V → (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
118, 10mpcom 38 . . . . . . . 8 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀))
126, 11syl 17 . . . . . . 7 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
1312ex 412 . . . . . 6 (𝑉𝑆 → (𝑆 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
14133ad2ant3 1135 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑆 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
155, 14mpd 15 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀))
16 eqid 2729 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
17 eqid 2729 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
182, 16, 17lcoval 48401 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑥 ∈ (𝑀 LinCo 𝑉) ↔ (𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)))))
191, 15, 18syl2anc 584 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 ∈ (𝑀 LinCo 𝑉) ↔ (𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)))))
20 lincellss 48415 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆))
2120imp 406 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆)
22 eleq1 2816 . . . . . . . . . . . 12 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (𝑥𝑆 ↔ (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆))
2321, 22imbitrrid 246 . . . . . . . . . . 11 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀)))) → 𝑥𝑆))
2423expd 415 . . . . . . . . . 10 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2524com12 32 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2625adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2726com13 88 . . . . . . 7 ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆)))
2827impr 454 . . . . . 6 ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉))) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆))
2928rexlimiva 3126 . . . . 5 (∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆))
3029com12 32 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → (∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)) → 𝑥𝑆))
3130expimpd 453 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉))) → 𝑥𝑆))
3219, 31sylbid 240 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥𝑆))
3332ralrimiv 3124 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914  𝒫 cpw 4563   class class class wbr 5107  cfv 6511  (class class class)co 7387  m cmap 8799   finSupp cfsupp 9312  Basecbs 17179  Scalarcsca 17223  0gc0g 17402  LModclmod 20766  LSubSpclss 20837   linC clinc 48393   LinCo clinco 48394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-lmod 20768  df-lss 20838  df-linc 48395  df-lco 48396
This theorem is referenced by:  lcosslsp  48427
  Copyright terms: Public domain W3C validator