Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellcoellss Structured version   Visualization version   GIF version

Theorem ellcoellss 48546
Description: Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
ellcoellss ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥𝑆)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆   𝑥,𝑉

Proof of Theorem ellcoellss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑀 ∈ LMod)
2 eqid 2731 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2731 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
42, 3lssss 20869 . . . . . 6 (𝑆 ∈ (LSubSp‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
543ad2ant2 1134 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑆 ⊆ (Base‘𝑀))
6 sstr 3938 . . . . . . . 8 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀))
7 fvex 6835 . . . . . . . . . 10 (Base‘𝑀) ∈ V
87ssex 5257 . . . . . . . . 9 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ V)
9 elpwg 4550 . . . . . . . . . 10 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
109biimprd 248 . . . . . . . . 9 (𝑉 ∈ V → (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
118, 10mpcom 38 . . . . . . . 8 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀))
126, 11syl 17 . . . . . . 7 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
1312ex 412 . . . . . 6 (𝑉𝑆 → (𝑆 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
14133ad2ant3 1135 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑆 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
155, 14mpd 15 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀))
16 eqid 2731 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
17 eqid 2731 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
182, 16, 17lcoval 48523 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑥 ∈ (𝑀 LinCo 𝑉) ↔ (𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)))))
191, 15, 18syl2anc 584 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 ∈ (𝑀 LinCo 𝑉) ↔ (𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)))))
20 lincellss 48537 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆))
2120imp 406 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆)
22 eleq1 2819 . . . . . . . . . . . 12 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (𝑥𝑆 ↔ (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆))
2321, 22imbitrrid 246 . . . . . . . . . . 11 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀)))) → 𝑥𝑆))
2423expd 415 . . . . . . . . . 10 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2524com12 32 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2625adantr 480 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2726com13 88 . . . . . . 7 ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆)))
2827impr 454 . . . . . 6 ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉))) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆))
2928rexlimiva 3125 . . . . 5 (∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆))
3029com12 32 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → (∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)) → 𝑥𝑆))
3130expimpd 453 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉))) → 𝑥𝑆))
3219, 31sylbid 240 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥𝑆))
3332ralrimiv 3123 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wss 3897  𝒫 cpw 4547   class class class wbr 5089  cfv 6481  (class class class)co 7346  m cmap 8750   finSupp cfsupp 9245  Basecbs 17120  Scalarcsca 17164  0gc0g 17343  LModclmod 20793  LSubSpclss 20864   linC clinc 48515   LinCo clinco 48516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-ur 20100  df-ring 20153  df-lmod 20795  df-lss 20865  df-linc 48517  df-lco 48518
This theorem is referenced by:  lcosslsp  48549
  Copyright terms: Public domain W3C validator