Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellcoellss Structured version   Visualization version   GIF version

Theorem ellcoellss 46506
Description: Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
ellcoellss ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥𝑆)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆   𝑥,𝑉

Proof of Theorem ellcoellss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑀 ∈ LMod)
2 eqid 2736 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2736 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
42, 3lssss 20397 . . . . . 6 (𝑆 ∈ (LSubSp‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
543ad2ant2 1134 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑆 ⊆ (Base‘𝑀))
6 sstr 3952 . . . . . . . 8 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀))
7 fvex 6855 . . . . . . . . . 10 (Base‘𝑀) ∈ V
87ssex 5278 . . . . . . . . 9 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ V)
9 elpwg 4563 . . . . . . . . . 10 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
109biimprd 247 . . . . . . . . 9 (𝑉 ∈ V → (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
118, 10mpcom 38 . . . . . . . 8 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀))
126, 11syl 17 . . . . . . 7 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
1312ex 413 . . . . . 6 (𝑉𝑆 → (𝑆 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
14133ad2ant3 1135 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑆 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
155, 14mpd 15 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀))
16 eqid 2736 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
17 eqid 2736 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
182, 16, 17lcoval 46483 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑥 ∈ (𝑀 LinCo 𝑉) ↔ (𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)))))
191, 15, 18syl2anc 584 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 ∈ (𝑀 LinCo 𝑉) ↔ (𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)))))
20 lincellss 46497 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆))
2120imp 407 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆)
22 eleq1 2825 . . . . . . . . . . . 12 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (𝑥𝑆 ↔ (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆))
2321, 22syl5ibr 245 . . . . . . . . . . 11 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀)))) → 𝑥𝑆))
2423expd 416 . . . . . . . . . 10 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2524com12 32 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2625adantr 481 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2726com13 88 . . . . . . 7 ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆)))
2827impr 455 . . . . . 6 ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉))) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆))
2928rexlimiva 3144 . . . . 5 (∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆))
3029com12 32 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → (∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)) → 𝑥𝑆))
3130expimpd 454 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉))) → 𝑥𝑆))
3219, 31sylbid 239 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥𝑆))
3332ralrimiv 3142 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  wss 3910  𝒫 cpw 4560   class class class wbr 5105  cfv 6496  (class class class)co 7357  m cmap 8765   finSupp cfsupp 9305  Basecbs 17083  Scalarcsca 17136  0gc0g 17321  LModclmod 20322  LSubSpclss 20392   linC clinc 46475   LinCo clinco 46476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393  df-linc 46477  df-lco 46478
This theorem is referenced by:  lcosslsp  46509
  Copyright terms: Public domain W3C validator