Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . . 4
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β π β LMod) |
2 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
3 | | eqid 2732 |
. . . . . . 7
β’
(LSubSpβπ) =
(LSubSpβπ) |
4 | 2, 3 | lssss 20539 |
. . . . . 6
β’ (π β (LSubSpβπ) β π β (Baseβπ)) |
5 | 4 | 3ad2ant2 1134 |
. . . . 5
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β π β (Baseβπ)) |
6 | | sstr 3989 |
. . . . . . . 8
β’ ((π β π β§ π β (Baseβπ)) β π β (Baseβπ)) |
7 | | fvex 6901 |
. . . . . . . . . 10
β’
(Baseβπ)
β V |
8 | 7 | ssex 5320 |
. . . . . . . . 9
β’ (π β (Baseβπ) β π β V) |
9 | | elpwg 4604 |
. . . . . . . . . 10
β’ (π β V β (π β π«
(Baseβπ) β π β (Baseβπ))) |
10 | 9 | biimprd 247 |
. . . . . . . . 9
β’ (π β V β (π β (Baseβπ) β π β π« (Baseβπ))) |
11 | 8, 10 | mpcom 38 |
. . . . . . . 8
β’ (π β (Baseβπ) β π β π« (Baseβπ)) |
12 | 6, 11 | syl 17 |
. . . . . . 7
β’ ((π β π β§ π β (Baseβπ)) β π β π« (Baseβπ)) |
13 | 12 | ex 413 |
. . . . . 6
β’ (π β π β (π β (Baseβπ) β π β π« (Baseβπ))) |
14 | 13 | 3ad2ant3 1135 |
. . . . 5
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β (π β (Baseβπ) β π β π« (Baseβπ))) |
15 | 5, 14 | mpd 15 |
. . . 4
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β π β π« (Baseβπ)) |
16 | | eqid 2732 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
17 | | eqid 2732 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
18 | 2, 16, 17 | lcoval 47046 |
. . . 4
β’ ((π β LMod β§ π β π«
(Baseβπ)) β
(π₯ β (π LinCo π) β (π₯ β (Baseβπ) β§ βπ β ((Baseβ(Scalarβπ)) βm π)(π finSupp
(0gβ(Scalarβπ)) β§ π₯ = (π( linC βπ)π))))) |
19 | 1, 15, 18 | syl2anc 584 |
. . 3
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β (π₯ β (π LinCo π) β (π₯ β (Baseβπ) β§ βπ β ((Baseβ(Scalarβπ)) βm π)(π finSupp
(0gβ(Scalarβπ)) β§ π₯ = (π( linC βπ)π))))) |
20 | | lincellss 47060 |
. . . . . . . . . . . . 13
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β ((π β ((Baseβ(Scalarβπ)) βm π) β§ π finSupp
(0gβ(Scalarβπ))) β (π( linC βπ)π) β π)) |
21 | 20 | imp 407 |
. . . . . . . . . . . 12
β’ (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ (π β ((Baseβ(Scalarβπ)) βm π) β§ π finSupp
(0gβ(Scalarβπ)))) β (π( linC βπ)π) β π) |
22 | | eleq1 2821 |
. . . . . . . . . . . 12
β’ (π₯ = (π( linC βπ)π) β (π₯ β π β (π( linC βπ)π) β π)) |
23 | 21, 22 | imbitrrid 245 |
. . . . . . . . . . 11
β’ (π₯ = (π( linC βπ)π) β (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ (π β ((Baseβ(Scalarβπ)) βm π) β§ π finSupp
(0gβ(Scalarβπ)))) β π₯ β π)) |
24 | 23 | expd 416 |
. . . . . . . . . 10
β’ (π₯ = (π( linC βπ)π) β ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β ((π β ((Baseβ(Scalarβπ)) βm π) β§ π finSupp
(0gβ(Scalarβπ))) β π₯ β π))) |
25 | 24 | com12 32 |
. . . . . . . . 9
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β (π₯ = (π( linC βπ)π) β ((π β ((Baseβ(Scalarβπ)) βm π) β§ π finSupp
(0gβ(Scalarβπ))) β π₯ β π))) |
26 | 25 | adantr 481 |
. . . . . . . 8
β’ (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ π₯ β (Baseβπ)) β (π₯ = (π( linC βπ)π) β ((π β ((Baseβ(Scalarβπ)) βm π) β§ π finSupp
(0gβ(Scalarβπ))) β π₯ β π))) |
27 | 26 | com13 88 |
. . . . . . 7
β’ ((π β
((Baseβ(Scalarβπ)) βm π) β§ π finSupp
(0gβ(Scalarβπ))) β (π₯ = (π( linC βπ)π) β (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ π₯ β (Baseβπ)) β π₯ β π))) |
28 | 27 | impr 455 |
. . . . . 6
β’ ((π β
((Baseβ(Scalarβπ)) βm π) β§ (π finSupp
(0gβ(Scalarβπ)) β§ π₯ = (π( linC βπ)π))) β (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ π₯ β (Baseβπ)) β π₯ β π)) |
29 | 28 | rexlimiva 3147 |
. . . . 5
β’
(βπ β
((Baseβ(Scalarβπ)) βm π)(π finSupp
(0gβ(Scalarβπ)) β§ π₯ = (π( linC βπ)π)) β (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ π₯ β (Baseβπ)) β π₯ β π)) |
30 | 29 | com12 32 |
. . . 4
β’ (((π β LMod β§ π β (LSubSpβπ) β§ π β π) β§ π₯ β (Baseβπ)) β (βπ β ((Baseβ(Scalarβπ)) βm π)(π finSupp
(0gβ(Scalarβπ)) β§ π₯ = (π( linC βπ)π)) β π₯ β π)) |
31 | 30 | expimpd 454 |
. . 3
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β ((π₯ β (Baseβπ) β§ βπ β ((Baseβ(Scalarβπ)) βm π)(π finSupp
(0gβ(Scalarβπ)) β§ π₯ = (π( linC βπ)π))) β π₯ β π)) |
32 | 19, 31 | sylbid 239 |
. 2
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β (π₯ β (π LinCo π) β π₯ β π)) |
33 | 32 | ralrimiv 3145 |
1
β’ ((π β LMod β§ π β (LSubSpβπ) β§ π β π) β βπ₯ β (π LinCo π)π₯ β π) |