Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellcoellss Structured version   Visualization version   GIF version

Theorem ellcoellss 47854
Description: Every linear combination of a subset of a linear subspace is also contained in the linear subspace. (Contributed by AV, 20-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
ellcoellss ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥𝑆)
Distinct variable groups:   𝑥,𝑀   𝑥,𝑆   𝑥,𝑉

Proof of Theorem ellcoellss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 simp1 1133 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑀 ∈ LMod)
2 eqid 2726 . . . . . . 7 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2726 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
42, 3lssss 20909 . . . . . 6 (𝑆 ∈ (LSubSp‘𝑀) → 𝑆 ⊆ (Base‘𝑀))
543ad2ant2 1131 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑆 ⊆ (Base‘𝑀))
6 sstr 3987 . . . . . . . 8 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → 𝑉 ⊆ (Base‘𝑀))
7 fvex 6906 . . . . . . . . . 10 (Base‘𝑀) ∈ V
87ssex 5318 . . . . . . . . 9 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ V)
9 elpwg 4600 . . . . . . . . . 10 (𝑉 ∈ V → (𝑉 ∈ 𝒫 (Base‘𝑀) ↔ 𝑉 ⊆ (Base‘𝑀)))
109biimprd 247 . . . . . . . . 9 (𝑉 ∈ V → (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
118, 10mpcom 38 . . . . . . . 8 (𝑉 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀))
126, 11syl 17 . . . . . . 7 ((𝑉𝑆𝑆 ⊆ (Base‘𝑀)) → 𝑉 ∈ 𝒫 (Base‘𝑀))
1312ex 411 . . . . . 6 (𝑉𝑆 → (𝑆 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
14133ad2ant3 1132 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑆 ⊆ (Base‘𝑀) → 𝑉 ∈ 𝒫 (Base‘𝑀)))
155, 14mpd 15 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → 𝑉 ∈ 𝒫 (Base‘𝑀))
16 eqid 2726 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
17 eqid 2726 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
182, 16, 17lcoval 47831 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑥 ∈ (𝑀 LinCo 𝑉) ↔ (𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)))))
191, 15, 18syl2anc 582 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 ∈ (𝑀 LinCo 𝑉) ↔ (𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)))))
20 lincellss 47845 . . . . . . . . . . . . 13 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆))
2120imp 405 . . . . . . . . . . . 12 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆)
22 eleq1 2814 . . . . . . . . . . . 12 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (𝑥𝑆 ↔ (𝑓( linC ‘𝑀)𝑉) ∈ 𝑆))
2321, 22imbitrrid 245 . . . . . . . . . . 11 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ (𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀)))) → 𝑥𝑆))
2423expd 414 . . . . . . . . . 10 (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2524com12 32 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2625adantr 479 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → 𝑥𝑆)))
2726com13 88 . . . . . . 7 ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ 𝑓 finSupp (0g‘(Scalar‘𝑀))) → (𝑥 = (𝑓( linC ‘𝑀)𝑉) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆)))
2827impr 453 . . . . . 6 ((𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉) ∧ (𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉))) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆))
2928rexlimiva 3137 . . . . 5 (∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)) → (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → 𝑥𝑆))
3029com12 32 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) ∧ 𝑥 ∈ (Base‘𝑀)) → (∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉)) → 𝑥𝑆))
3130expimpd 452 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ((𝑥 ∈ (Base‘𝑀) ∧ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑥 = (𝑓( linC ‘𝑀)𝑉))) → 𝑥𝑆))
3219, 31sylbid 239 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥𝑆))
3332ralrimiv 3135 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑆) → ∀𝑥 ∈ (𝑀 LinCo 𝑉)𝑥𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060  Vcvv 3462  wss 3946  𝒫 cpw 4597   class class class wbr 5145  cfv 6546  (class class class)co 7416  m cmap 8847   finSupp cfsupp 9398  Basecbs 17208  Scalarcsca 17264  0gc0g 17449  LModclmod 20832  LSubSpclss 20904   linC clinc 47823   LinCo clinco 47824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-n0 12519  df-z 12605  df-uz 12869  df-fz 13533  df-fzo 13676  df-seq 14016  df-hash 14343  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-0g 17451  df-gsum 17452  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-grp 18926  df-minusg 18927  df-sbg 18928  df-subg 19113  df-cntz 19307  df-cmn 19776  df-abl 19777  df-mgp 20114  df-ur 20161  df-ring 20214  df-lmod 20834  df-lss 20905  df-linc 47825  df-lco 47826
This theorem is referenced by:  lcosslsp  47857
  Copyright terms: Public domain W3C validator