![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincolss | Structured version Visualization version GIF version |
Description: According to the statement in [Lang] p. 129, the set (LSubSpβπ) of all linear combinations of a set of vectors V is a submodule (generated by V) of the module M. The elements of V are called generators of (LSubSpβπ). (Contributed by AV, 12-Apr-2019.) |
Ref | Expression |
---|---|
lincolss | β’ ((π β LMod β§ π β π« (Baseβπ)) β (π LinCo π) β (LSubSpβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2725 | . 2 β’ ((π β LMod β§ π β π« (Baseβπ)) β (Scalarβπ) = (Scalarβπ)) | |
2 | eqidd 2725 | . 2 β’ ((π β LMod β§ π β π« (Baseβπ)) β (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ))) | |
3 | eqidd 2725 | . 2 β’ ((π β LMod β§ π β π« (Baseβπ)) β (Baseβπ) = (Baseβπ)) | |
4 | eqidd 2725 | . 2 β’ ((π β LMod β§ π β π« (Baseβπ)) β (+gβπ) = (+gβπ)) | |
5 | eqidd 2725 | . 2 β’ ((π β LMod β§ π β π« (Baseβπ)) β ( Β·π βπ) = ( Β·π βπ)) | |
6 | eqidd 2725 | . 2 β’ ((π β LMod β§ π β π« (Baseβπ)) β (LSubSpβπ) = (LSubSpβπ)) | |
7 | eqid 2724 | . . . . 5 β’ (Baseβπ) = (Baseβπ) | |
8 | eqid 2724 | . . . . 5 β’ (Scalarβπ) = (Scalarβπ) | |
9 | eqid 2724 | . . . . 5 β’ (Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) | |
10 | 7, 8, 9 | lcoval 47247 | . . . 4 β’ ((π β LMod β§ π β π« (Baseβπ)) β (π£ β (π LinCo π) β (π£ β (Baseβπ) β§ βπ β ((Baseβ(Scalarβπ)) βm π)(π finSupp (0gβ(Scalarβπ)) β§ π£ = (π ( linC βπ)π))))) |
11 | simpl 482 | . . . 4 β’ ((π£ β (Baseβπ) β§ βπ β ((Baseβ(Scalarβπ)) βm π)(π finSupp (0gβ(Scalarβπ)) β§ π£ = (π ( linC βπ)π))) β π£ β (Baseβπ)) | |
12 | 10, 11 | syl6bi 253 | . . 3 β’ ((π β LMod β§ π β π« (Baseβπ)) β (π£ β (π LinCo π) β π£ β (Baseβπ))) |
13 | 12 | ssrdv 3980 | . 2 β’ ((π β LMod β§ π β π« (Baseβπ)) β (π LinCo π) β (Baseβπ)) |
14 | lcoel0 47263 | . . 3 β’ ((π β LMod β§ π β π« (Baseβπ)) β (0gβπ) β (π LinCo π)) | |
15 | 14 | ne0d 4327 | . 2 β’ ((π β LMod β§ π β π« (Baseβπ)) β (π LinCo π) β β ) |
16 | eqid 2724 | . . 3 β’ ( Β·π βπ) = ( Β·π βπ) | |
17 | eqid 2724 | . . 3 β’ (+gβπ) = (+gβπ) | |
18 | 16, 9, 17 | lincsumscmcl 47268 | . 2 β’ (((π β LMod β§ π β π« (Baseβπ)) β§ (π₯ β (Baseβ(Scalarβπ)) β§ π β (π LinCo π) β§ π β (π LinCo π))) β ((π₯( Β·π βπ)π)(+gβπ)π) β (π LinCo π)) |
19 | 1, 2, 3, 4, 5, 6, 13, 15, 18 | islssd 20767 | 1 β’ ((π β LMod β§ π β π« (Baseβπ)) β (π LinCo π) β (LSubSpβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwrex 3062 π« cpw 4594 class class class wbr 5138 βcfv 6533 (class class class)co 7401 βm cmap 8815 finSupp cfsupp 9356 Basecbs 17140 +gcplusg 17193 Scalarcsca 17196 Β·π cvsca 17197 0gc0g 17381 LModclmod 20691 LSubSpclss 20763 linC clinc 47239 LinCo clinco 47240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-0g 17383 df-gsum 17384 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-mhm 18700 df-submnd 18701 df-grp 18853 df-minusg 18854 df-ghm 19124 df-cntz 19218 df-cmn 19687 df-abl 19688 df-mgp 20025 df-rng 20043 df-ur 20072 df-ring 20125 df-lmod 20693 df-lss 20764 df-linc 47241 df-lco 47242 |
This theorem is referenced by: lspsslco 47272 |
Copyright terms: Public domain | W3C validator |