Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lincolss Structured version   Visualization version   GIF version

Theorem lincolss 45636
Description: According to the statement in [Lang] p. 129, the set (LSubSp‘𝑀) of all linear combinations of a set of vectors V is a submodule (generated by V) of the module M. The elements of V are called generators of (LSubSp‘𝑀). (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
lincolss ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ∈ (LSubSp‘𝑀))

Proof of Theorem lincolss
Dummy variables 𝑎 𝑏 𝑠 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2740 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) = (Scalar‘𝑀))
2 eqidd 2740 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)))
3 eqidd 2740 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Base‘𝑀) = (Base‘𝑀))
4 eqidd 2740 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (+g𝑀) = (+g𝑀))
5 eqidd 2740 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ( ·𝑠𝑀) = ( ·𝑠𝑀))
6 eqidd 2740 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (LSubSp‘𝑀) = (LSubSp‘𝑀))
7 eqid 2739 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
8 eqid 2739 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
9 eqid 2739 . . . . 5 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
107, 8, 9lcoval 45614 . . . 4 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑠( linC ‘𝑀)𝑉)))))
11 simpl 486 . . . 4 ((𝑣 ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑠( linC ‘𝑀)𝑉))) → 𝑣 ∈ (Base‘𝑀))
1210, 11syl6bi 256 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ (𝑀 LinCo 𝑉) → 𝑣 ∈ (Base‘𝑀)))
1312ssrdv 3924 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ⊆ (Base‘𝑀))
14 lcoel0 45630 . . 3 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g𝑀) ∈ (𝑀 LinCo 𝑉))
1514ne0d 4267 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ≠ ∅)
16 eqid 2739 . . 3 ( ·𝑠𝑀) = ( ·𝑠𝑀)
17 eqid 2739 . . 3 (+g𝑀) = (+g𝑀)
1816, 9, 17lincsumscmcl 45635 . 2 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ (𝑀 LinCo 𝑉) ∧ 𝑏 ∈ (𝑀 LinCo 𝑉))) → ((𝑥( ·𝑠𝑀)𝑎)(+g𝑀)𝑏) ∈ (𝑀 LinCo 𝑉))
191, 2, 3, 4, 5, 6, 13, 15, 18islssd 20087 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ∈ (LSubSp‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wrex 3065  𝒫 cpw 4530   class class class wbr 5070  cfv 6415  (class class class)co 7252  m cmap 8550   finSupp cfsupp 9033  Basecbs 16815  +gcplusg 16863  Scalarcsca 16866   ·𝑠 cvsca 16867  0gc0g 17042  LModclmod 20013  LSubSpclss 20083   linC clinc 45606   LinCo clinco 45607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-se 5535  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-isom 6424  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-of 7508  df-om 7685  df-1st 7801  df-2nd 7802  df-supp 7946  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-er 8433  df-map 8552  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-fsupp 9034  df-oi 9174  df-card 9603  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-n0 12139  df-z 12225  df-uz 12487  df-fz 13144  df-fzo 13287  df-seq 13625  df-hash 13948  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-ress 16843  df-plusg 16876  df-0g 17044  df-gsum 17045  df-mgm 18216  df-sgrp 18265  df-mnd 18276  df-mhm 18320  df-submnd 18321  df-grp 18470  df-minusg 18471  df-ghm 18722  df-cntz 18813  df-cmn 19278  df-abl 19279  df-mgp 19611  df-ur 19628  df-ring 19675  df-lmod 20015  df-lss 20084  df-linc 45608  df-lco 45609
This theorem is referenced by:  lspsslco  45639
  Copyright terms: Public domain W3C validator