Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincolss | Structured version Visualization version GIF version |
Description: According to the statement in [Lang] p. 129, the set (LSubSp‘𝑀) of all linear combinations of a set of vectors V is a submodule (generated by V) of the module M. The elements of V are called generators of (LSubSp‘𝑀). (Contributed by AV, 12-Apr-2019.) |
Ref | Expression |
---|---|
lincolss | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ∈ (LSubSp‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2740 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) = (Scalar‘𝑀)) | |
2 | eqidd 2740 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))) | |
3 | eqidd 2740 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Base‘𝑀) = (Base‘𝑀)) | |
4 | eqidd 2740 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (+g‘𝑀) = (+g‘𝑀)) | |
5 | eqidd 2740 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀)) | |
6 | eqidd 2740 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (LSubSp‘𝑀) = (LSubSp‘𝑀)) | |
7 | eqid 2739 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
8 | eqid 2739 | . . . . 5 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
9 | eqid 2739 | . . . . 5 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
10 | 7, 8, 9 | lcoval 45614 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑠( linC ‘𝑀)𝑉))))) |
11 | simpl 486 | . . . 4 ⊢ ((𝑣 ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑠( linC ‘𝑀)𝑉))) → 𝑣 ∈ (Base‘𝑀)) | |
12 | 10, 11 | syl6bi 256 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ (𝑀 LinCo 𝑉) → 𝑣 ∈ (Base‘𝑀))) |
13 | 12 | ssrdv 3924 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ⊆ (Base‘𝑀)) |
14 | lcoel0 45630 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g‘𝑀) ∈ (𝑀 LinCo 𝑉)) | |
15 | 14 | ne0d 4267 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ≠ ∅) |
16 | eqid 2739 | . . 3 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
17 | eqid 2739 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
18 | 16, 9, 17 | lincsumscmcl 45635 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ (𝑀 LinCo 𝑉) ∧ 𝑏 ∈ (𝑀 LinCo 𝑉))) → ((𝑥( ·𝑠 ‘𝑀)𝑎)(+g‘𝑀)𝑏) ∈ (𝑀 LinCo 𝑉)) |
19 | 1, 2, 3, 4, 5, 6, 13, 15, 18 | islssd 20087 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ∈ (LSubSp‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∃wrex 3065 𝒫 cpw 4530 class class class wbr 5070 ‘cfv 6415 (class class class)co 7252 ↑m cmap 8550 finSupp cfsupp 9033 Basecbs 16815 +gcplusg 16863 Scalarcsca 16866 ·𝑠 cvsca 16867 0gc0g 17042 LModclmod 20013 LSubSpclss 20083 linC clinc 45606 LinCo clinco 45607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-se 5535 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-isom 6424 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-of 7508 df-om 7685 df-1st 7801 df-2nd 7802 df-supp 7946 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-fsupp 9034 df-oi 9174 df-card 9603 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-n0 12139 df-z 12225 df-uz 12487 df-fz 13144 df-fzo 13287 df-seq 13625 df-hash 13948 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-plusg 16876 df-0g 17044 df-gsum 17045 df-mgm 18216 df-sgrp 18265 df-mnd 18276 df-mhm 18320 df-submnd 18321 df-grp 18470 df-minusg 18471 df-ghm 18722 df-cntz 18813 df-cmn 19278 df-abl 19279 df-mgp 19611 df-ur 19628 df-ring 19675 df-lmod 20015 df-lss 20084 df-linc 45608 df-lco 45609 |
This theorem is referenced by: lspsslco 45639 |
Copyright terms: Public domain | W3C validator |