![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lincolss | Structured version Visualization version GIF version |
Description: According to the statement in [Lang] p. 129, the set (LSubSp‘𝑀) of all linear combinations of a set of vectors V is a submodule (generated by V) of the module M. The elements of V are called generators of (LSubSp‘𝑀). (Contributed by AV, 12-Apr-2019.) |
Ref | Expression |
---|---|
lincolss | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ∈ (LSubSp‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2826 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Scalar‘𝑀) = (Scalar‘𝑀)) | |
2 | eqidd 2826 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))) | |
3 | eqidd 2826 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (Base‘𝑀) = (Base‘𝑀)) | |
4 | eqidd 2826 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (+g‘𝑀) = (+g‘𝑀)) | |
5 | eqidd 2826 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀)) | |
6 | eqidd 2826 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (LSubSp‘𝑀) = (LSubSp‘𝑀)) | |
7 | eqid 2825 | . . . . 5 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
8 | eqid 2825 | . . . . 5 ⊢ (Scalar‘𝑀) = (Scalar‘𝑀) | |
9 | eqid 2825 | . . . . 5 ⊢ (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) | |
10 | 7, 8, 9 | lcoval 43048 | . . . 4 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ (𝑀 LinCo 𝑉) ↔ (𝑣 ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑠( linC ‘𝑀)𝑉))))) |
11 | simpl 476 | . . . 4 ⊢ ((𝑣 ∈ (Base‘𝑀) ∧ ∃𝑠 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑉)(𝑠 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑠( linC ‘𝑀)𝑉))) → 𝑣 ∈ (Base‘𝑀)) | |
12 | 10, 11 | syl6bi 245 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑣 ∈ (𝑀 LinCo 𝑉) → 𝑣 ∈ (Base‘𝑀))) |
13 | 12 | ssrdv 3833 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ⊆ (Base‘𝑀)) |
14 | lcoel0 43064 | . . 3 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (0g‘𝑀) ∈ (𝑀 LinCo 𝑉)) | |
15 | 14 | ne0d 4151 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ≠ ∅) |
16 | eqid 2825 | . . 3 ⊢ ( ·𝑠 ‘𝑀) = ( ·𝑠 ‘𝑀) | |
17 | eqid 2825 | . . 3 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
18 | 16, 9, 17 | lincsumscmcl 43069 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑎 ∈ (𝑀 LinCo 𝑉) ∧ 𝑏 ∈ (𝑀 LinCo 𝑉))) → ((𝑥( ·𝑠 ‘𝑀)𝑎)(+g‘𝑀)𝑏) ∈ (𝑀 LinCo 𝑉)) |
19 | 1, 2, 3, 4, 5, 6, 13, 15, 18 | islssd 19292 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo 𝑉) ∈ (LSubSp‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∃wrex 3118 𝒫 cpw 4378 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 ↑𝑚 cmap 8122 finSupp cfsupp 8544 Basecbs 16222 +gcplusg 16305 Scalarcsca 16308 ·𝑠 cvsca 16309 0gc0g 16453 LModclmod 19219 LSubSpclss 19288 linC clinc 43040 LinCo clinco 43041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-of 7157 df-om 7327 df-1st 7428 df-2nd 7429 df-supp 7560 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-1o 7826 df-oadd 7830 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-fsupp 8545 df-oi 8684 df-card 9078 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-n0 11619 df-z 11705 df-uz 11969 df-fz 12620 df-fzo 12761 df-seq 13096 df-hash 13411 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-ress 16230 df-plusg 16318 df-0g 16455 df-gsum 16456 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-mhm 17688 df-submnd 17689 df-grp 17779 df-minusg 17780 df-ghm 18009 df-cntz 18100 df-cmn 18548 df-abl 18549 df-mgp 18844 df-ur 18856 df-ring 18903 df-lmod 19221 df-lss 19289 df-linc 43042 df-lco 43043 |
This theorem is referenced by: lspsslco 43073 |
Copyright terms: Public domain | W3C validator |