MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvs0or Structured version   Visualization version   GIF version

Theorem lvecvs0or 20370
Description: If a scalar product is zero, one of its factors must be zero. (hvmul0or 29387 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmul0or.v 𝑉 = (Base‘𝑊)
lvecmul0or.s · = ( ·𝑠𝑊)
lvecmul0or.f 𝐹 = (Scalar‘𝑊)
lvecmul0or.k 𝐾 = (Base‘𝐹)
lvecmul0or.o 𝑂 = (0g𝐹)
lvecmul0or.z 0 = (0g𝑊)
lvecmul0or.w (𝜑𝑊 ∈ LVec)
lvecmul0or.a (𝜑𝐴𝐾)
lvecmul0or.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lvecvs0or (𝜑 → ((𝐴 · 𝑋) = 0 ↔ (𝐴 = 𝑂𝑋 = 0 )))

Proof of Theorem lvecvs0or
StepHypRef Expression
1 df-ne 2944 . . . . 5 (𝐴𝑂 ↔ ¬ 𝐴 = 𝑂)
2 oveq2 7283 . . . . . . . 8 ((𝐴 · 𝑋) = 0 → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) = (((invr𝐹)‘𝐴) · 0 ))
32ad2antlr 724 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) = (((invr𝐹)‘𝐴) · 0 ))
4 lvecmul0or.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LVec)
54adantr 481 . . . . . . . . . . . 12 ((𝜑𝐴𝑂) → 𝑊 ∈ LVec)
6 lvecmul0or.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
76lvecdrng 20367 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
85, 7syl 17 . . . . . . . . . . 11 ((𝜑𝐴𝑂) → 𝐹 ∈ DivRing)
9 lvecmul0or.a . . . . . . . . . . . 12 (𝜑𝐴𝐾)
109adantr 481 . . . . . . . . . . 11 ((𝜑𝐴𝑂) → 𝐴𝐾)
11 simpr 485 . . . . . . . . . . 11 ((𝜑𝐴𝑂) → 𝐴𝑂)
12 lvecmul0or.k . . . . . . . . . . . 12 𝐾 = (Base‘𝐹)
13 lvecmul0or.o . . . . . . . . . . . 12 𝑂 = (0g𝐹)
14 eqid 2738 . . . . . . . . . . . 12 (.r𝐹) = (.r𝐹)
15 eqid 2738 . . . . . . . . . . . 12 (1r𝐹) = (1r𝐹)
16 eqid 2738 . . . . . . . . . . . 12 (invr𝐹) = (invr𝐹)
1712, 13, 14, 15, 16drnginvrl 20010 . . . . . . . . . . 11 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴𝑂) → (((invr𝐹)‘𝐴)(.r𝐹)𝐴) = (1r𝐹))
188, 10, 11, 17syl3anc 1370 . . . . . . . . . 10 ((𝜑𝐴𝑂) → (((invr𝐹)‘𝐴)(.r𝐹)𝐴) = (1r𝐹))
1918oveq1d 7290 . . . . . . . . 9 ((𝜑𝐴𝑂) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = ((1r𝐹) · 𝑋))
20 lveclmod 20368 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
214, 20syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
2221adantr 481 . . . . . . . . . 10 ((𝜑𝐴𝑂) → 𝑊 ∈ LMod)
2312, 13, 16drnginvrcl 20008 . . . . . . . . . . 11 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴𝑂) → ((invr𝐹)‘𝐴) ∈ 𝐾)
248, 10, 11, 23syl3anc 1370 . . . . . . . . . 10 ((𝜑𝐴𝑂) → ((invr𝐹)‘𝐴) ∈ 𝐾)
25 lvecmul0or.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
2625adantr 481 . . . . . . . . . 10 ((𝜑𝐴𝑂) → 𝑋𝑉)
27 lvecmul0or.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
28 lvecmul0or.s . . . . . . . . . . 11 · = ( ·𝑠𝑊)
2927, 6, 28, 12, 14lmodvsass 20148 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (((invr𝐹)‘𝐴) ∈ 𝐾𝐴𝐾𝑋𝑉)) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
3022, 24, 10, 26, 29syl13anc 1371 . . . . . . . . 9 ((𝜑𝐴𝑂) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
3127, 6, 28, 15lmodvs1 20151 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
3221, 25, 31syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1r𝐹) · 𝑋) = 𝑋)
3332adantr 481 . . . . . . . . 9 ((𝜑𝐴𝑂) → ((1r𝐹) · 𝑋) = 𝑋)
3419, 30, 333eqtr3d 2786 . . . . . . . 8 ((𝜑𝐴𝑂) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) = 𝑋)
3534adantlr 712 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) = 𝑋)
3621adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐴 · 𝑋) = 0 ) → 𝑊 ∈ LMod)
3736adantr 481 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → 𝑊 ∈ LMod)
3824adantlr 712 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → ((invr𝐹)‘𝐴) ∈ 𝐾)
39 lvecmul0or.z . . . . . . . . 9 0 = (0g𝑊)
406, 28, 12, 39lmodvs0 20157 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((invr𝐹)‘𝐴) ∈ 𝐾) → (((invr𝐹)‘𝐴) · 0 ) = 0 )
4137, 38, 40syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → (((invr𝐹)‘𝐴) · 0 ) = 0 )
423, 35, 413eqtr3d 2786 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → 𝑋 = 0 )
4342ex 413 . . . . 5 ((𝜑 ∧ (𝐴 · 𝑋) = 0 ) → (𝐴𝑂𝑋 = 0 ))
441, 43syl5bir 242 . . . 4 ((𝜑 ∧ (𝐴 · 𝑋) = 0 ) → (¬ 𝐴 = 𝑂𝑋 = 0 ))
4544orrd 860 . . 3 ((𝜑 ∧ (𝐴 · 𝑋) = 0 ) → (𝐴 = 𝑂𝑋 = 0 ))
4645ex 413 . 2 (𝜑 → ((𝐴 · 𝑋) = 0 → (𝐴 = 𝑂𝑋 = 0 )))
4727, 6, 28, 13, 39lmod0vs 20156 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
4821, 25, 47syl2anc 584 . . . 4 (𝜑 → (𝑂 · 𝑋) = 0 )
49 oveq1 7282 . . . . 5 (𝐴 = 𝑂 → (𝐴 · 𝑋) = (𝑂 · 𝑋))
5049eqeq1d 2740 . . . 4 (𝐴 = 𝑂 → ((𝐴 · 𝑋) = 0 ↔ (𝑂 · 𝑋) = 0 ))
5148, 50syl5ibrcom 246 . . 3 (𝜑 → (𝐴 = 𝑂 → (𝐴 · 𝑋) = 0 ))
526, 28, 12, 39lmodvs0 20157 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾) → (𝐴 · 0 ) = 0 )
5321, 9, 52syl2anc 584 . . . 4 (𝜑 → (𝐴 · 0 ) = 0 )
54 oveq2 7283 . . . . 5 (𝑋 = 0 → (𝐴 · 𝑋) = (𝐴 · 0 ))
5554eqeq1d 2740 . . . 4 (𝑋 = 0 → ((𝐴 · 𝑋) = 0 ↔ (𝐴 · 0 ) = 0 ))
5653, 55syl5ibrcom 246 . . 3 (𝜑 → (𝑋 = 0 → (𝐴 · 𝑋) = 0 ))
5751, 56jaod 856 . 2 (𝜑 → ((𝐴 = 𝑂𝑋 = 0 ) → (𝐴 · 𝑋) = 0 ))
5846, 57impbid 211 1 (𝜑 → ((𝐴 · 𝑋) = 0 ↔ (𝐴 = 𝑂𝑋 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  1rcur 19737  invrcinvr 19913  DivRingcdr 19991  LModclmod 20123  LVecclvec 20364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-lmod 20125  df-lvec 20365
This theorem is referenced by:  lvecvsn0  20371  lvecvscan  20373  lvecvscan2  20374  lindssn  31573  lkreqN  37184  lkrlspeqN  37185  hdmap14lem6  39887  hgmapval0  39906
  Copyright terms: Public domain W3C validator