MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvs0or Structured version   Visualization version   GIF version

Theorem lvecvs0or 21055
Description: If a scalar product is zero, one of its factors must be zero. (hvmul0or 31016 analog.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lvecmul0or.v 𝑉 = (Base‘𝑊)
lvecmul0or.s · = ( ·𝑠𝑊)
lvecmul0or.f 𝐹 = (Scalar‘𝑊)
lvecmul0or.k 𝐾 = (Base‘𝐹)
lvecmul0or.o 𝑂 = (0g𝐹)
lvecmul0or.z 0 = (0g𝑊)
lvecmul0or.w (𝜑𝑊 ∈ LVec)
lvecmul0or.a (𝜑𝐴𝐾)
lvecmul0or.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lvecvs0or (𝜑 → ((𝐴 · 𝑋) = 0 ↔ (𝐴 = 𝑂𝑋 = 0 )))

Proof of Theorem lvecvs0or
StepHypRef Expression
1 df-ne 2931 . . . . 5 (𝐴𝑂 ↔ ¬ 𝐴 = 𝑂)
2 oveq2 7363 . . . . . . . 8 ((𝐴 · 𝑋) = 0 → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) = (((invr𝐹)‘𝐴) · 0 ))
32ad2antlr 727 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) = (((invr𝐹)‘𝐴) · 0 ))
4 lvecmul0or.w . . . . . . . . . . . . 13 (𝜑𝑊 ∈ LVec)
54adantr 480 . . . . . . . . . . . 12 ((𝜑𝐴𝑂) → 𝑊 ∈ LVec)
6 lvecmul0or.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
76lvecdrng 21049 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
85, 7syl 17 . . . . . . . . . . 11 ((𝜑𝐴𝑂) → 𝐹 ∈ DivRing)
9 lvecmul0or.a . . . . . . . . . . . 12 (𝜑𝐴𝐾)
109adantr 480 . . . . . . . . . . 11 ((𝜑𝐴𝑂) → 𝐴𝐾)
11 simpr 484 . . . . . . . . . . 11 ((𝜑𝐴𝑂) → 𝐴𝑂)
12 lvecmul0or.k . . . . . . . . . . . 12 𝐾 = (Base‘𝐹)
13 lvecmul0or.o . . . . . . . . . . . 12 𝑂 = (0g𝐹)
14 eqid 2733 . . . . . . . . . . . 12 (.r𝐹) = (.r𝐹)
15 eqid 2733 . . . . . . . . . . . 12 (1r𝐹) = (1r𝐹)
16 eqid 2733 . . . . . . . . . . . 12 (invr𝐹) = (invr𝐹)
1712, 13, 14, 15, 16drnginvrl 20681 . . . . . . . . . . 11 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴𝑂) → (((invr𝐹)‘𝐴)(.r𝐹)𝐴) = (1r𝐹))
188, 10, 11, 17syl3anc 1373 . . . . . . . . . 10 ((𝜑𝐴𝑂) → (((invr𝐹)‘𝐴)(.r𝐹)𝐴) = (1r𝐹))
1918oveq1d 7370 . . . . . . . . 9 ((𝜑𝐴𝑂) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = ((1r𝐹) · 𝑋))
20 lveclmod 21050 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
214, 20syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ LMod)
2221adantr 480 . . . . . . . . . 10 ((𝜑𝐴𝑂) → 𝑊 ∈ LMod)
2312, 13, 16drnginvrcl 20678 . . . . . . . . . . 11 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴𝑂) → ((invr𝐹)‘𝐴) ∈ 𝐾)
248, 10, 11, 23syl3anc 1373 . . . . . . . . . 10 ((𝜑𝐴𝑂) → ((invr𝐹)‘𝐴) ∈ 𝐾)
25 lvecmul0or.x . . . . . . . . . . 11 (𝜑𝑋𝑉)
2625adantr 480 . . . . . . . . . 10 ((𝜑𝐴𝑂) → 𝑋𝑉)
27 lvecmul0or.v . . . . . . . . . . 11 𝑉 = (Base‘𝑊)
28 lvecmul0or.s . . . . . . . . . . 11 · = ( ·𝑠𝑊)
2927, 6, 28, 12, 14lmodvsass 20830 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ (((invr𝐹)‘𝐴) ∈ 𝐾𝐴𝐾𝑋𝑉)) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
3022, 24, 10, 26, 29syl13anc 1374 . . . . . . . . 9 ((𝜑𝐴𝑂) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
3127, 6, 28, 15lmodvs1 20833 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
3221, 25, 31syl2anc 584 . . . . . . . . . 10 (𝜑 → ((1r𝐹) · 𝑋) = 𝑋)
3332adantr 480 . . . . . . . . 9 ((𝜑𝐴𝑂) → ((1r𝐹) · 𝑋) = 𝑋)
3419, 30, 333eqtr3d 2776 . . . . . . . 8 ((𝜑𝐴𝑂) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) = 𝑋)
3534adantlr 715 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) = 𝑋)
3621adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐴 · 𝑋) = 0 ) → 𝑊 ∈ LMod)
3736adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → 𝑊 ∈ LMod)
3824adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → ((invr𝐹)‘𝐴) ∈ 𝐾)
39 lvecmul0or.z . . . . . . . . 9 0 = (0g𝑊)
406, 28, 12, 39lmodvs0 20839 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((invr𝐹)‘𝐴) ∈ 𝐾) → (((invr𝐹)‘𝐴) · 0 ) = 0 )
4137, 38, 40syl2anc 584 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → (((invr𝐹)‘𝐴) · 0 ) = 0 )
423, 35, 413eqtr3d 2776 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝑋) = 0 ) ∧ 𝐴𝑂) → 𝑋 = 0 )
4342ex 412 . . . . 5 ((𝜑 ∧ (𝐴 · 𝑋) = 0 ) → (𝐴𝑂𝑋 = 0 ))
441, 43biimtrrid 243 . . . 4 ((𝜑 ∧ (𝐴 · 𝑋) = 0 ) → (¬ 𝐴 = 𝑂𝑋 = 0 ))
4544orrd 863 . . 3 ((𝜑 ∧ (𝐴 · 𝑋) = 0 ) → (𝐴 = 𝑂𝑋 = 0 ))
4645ex 412 . 2 (𝜑 → ((𝐴 · 𝑋) = 0 → (𝐴 = 𝑂𝑋 = 0 )))
4727, 6, 28, 13, 39lmod0vs 20838 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑂 · 𝑋) = 0 )
4821, 25, 47syl2anc 584 . . . 4 (𝜑 → (𝑂 · 𝑋) = 0 )
49 oveq1 7362 . . . . 5 (𝐴 = 𝑂 → (𝐴 · 𝑋) = (𝑂 · 𝑋))
5049eqeq1d 2735 . . . 4 (𝐴 = 𝑂 → ((𝐴 · 𝑋) = 0 ↔ (𝑂 · 𝑋) = 0 ))
5148, 50syl5ibrcom 247 . . 3 (𝜑 → (𝐴 = 𝑂 → (𝐴 · 𝑋) = 0 ))
526, 28, 12, 39lmodvs0 20839 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾) → (𝐴 · 0 ) = 0 )
5321, 9, 52syl2anc 584 . . . 4 (𝜑 → (𝐴 · 0 ) = 0 )
54 oveq2 7363 . . . . 5 (𝑋 = 0 → (𝐴 · 𝑋) = (𝐴 · 0 ))
5554eqeq1d 2735 . . . 4 (𝑋 = 0 → ((𝐴 · 𝑋) = 0 ↔ (𝐴 · 0 ) = 0 ))
5653, 55syl5ibrcom 247 . . 3 (𝜑 → (𝑋 = 0 → (𝐴 · 𝑋) = 0 ))
5751, 56jaod 859 . 2 (𝜑 → ((𝐴 = 𝑂𝑋 = 0 ) → (𝐴 · 𝑋) = 0 ))
5846, 57impbid 212 1 (𝜑 → ((𝐴 · 𝑋) = 0 ↔ (𝐴 = 𝑂𝑋 = 0 )))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2930  cfv 6489  (class class class)co 7355  Basecbs 17130  .rcmulr 17172  Scalarcsca 17174   ·𝑠 cvsca 17175  0gc0g 17353  1rcur 20109  invrcinvr 20315  DivRingcdr 20654  LModclmod 20803  LVecclvec 21046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-3 12199  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-ress 17152  df-plusg 17184  df-mulr 17185  df-0g 17355  df-mgm 18558  df-sgrp 18637  df-mnd 18653  df-grp 18859  df-minusg 18860  df-cmn 19704  df-abl 19705  df-mgp 20069  df-rng 20081  df-ur 20110  df-ring 20163  df-oppr 20265  df-dvdsr 20285  df-unit 20286  df-invr 20316  df-drng 20656  df-lmod 20805  df-lvec 21047
This theorem is referenced by:  lvecvsn0  21056  lvecvscan  21058  lvecvscan2  21059  lindssn  33354  lkreqN  39279  lkrlspeqN  39280  hdmap14lem6  41982  hgmapval0  42001
  Copyright terms: Public domain W3C validator