MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimf1o Structured version   Visualization version   GIF version

Theorem lmimf1o 20985
Description: An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
islmim.b 𝐵 = (Base‘𝑅)
islmim.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
lmimf1o (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵1-1-onto𝐶)

Proof of Theorem lmimf1o
StepHypRef Expression
1 islmim.b . . 3 𝐵 = (Base‘𝑅)
2 islmim.c . . 3 𝐶 = (Base‘𝑆)
31, 2islmim 20984 . 2 (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
43simprbi 496 1 (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Basecbs 17138   LMHom clmhm 20941   LMIso clmim 20942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-lmhm 20944  df-lmim 20945
This theorem is referenced by:  lmimgim  20987  lmimlbs  21761  lmimdim  33575  lnmlmic  43061
  Copyright terms: Public domain W3C validator