MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimf1o Structured version   Visualization version   GIF version

Theorem lmimf1o 21063
Description: An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypotheses
Ref Expression
islmim.b 𝐵 = (Base‘𝑅)
islmim.c 𝐶 = (Base‘𝑆)
Assertion
Ref Expression
lmimf1o (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵1-1-onto𝐶)

Proof of Theorem lmimf1o
StepHypRef Expression
1 islmim.b . . 3 𝐵 = (Base‘𝑅)
2 islmim.c . . 3 𝐶 = (Base‘𝑆)
31, 2islmim 21062 . 2 (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵1-1-onto𝐶))
43simprbi 496 1 (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  Basecbs 17248   LMHom clmhm 21019   LMIso clmim 21020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-lmhm 21022  df-lmim 21023
This theorem is referenced by:  lmimgim  21065  lmimlbs  21857  lmimdim  33655  lnmlmic  43105
  Copyright terms: Public domain W3C validator