|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lmimf1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| islmim.b | ⊢ 𝐵 = (Base‘𝑅) | 
| islmim.c | ⊢ 𝐶 = (Base‘𝑆) | 
| Ref | Expression | 
|---|---|
| lmimf1o | ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | islmim.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | islmim.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 3 | 1, 2 | islmim 21062 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) | 
| 4 | 3 | simprbi 496 | 1 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 –1-1-onto→wf1o 6559 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 LMHom clmhm 21019 LMIso clmim 21020 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-lmhm 21022 df-lmim 21023 | 
| This theorem is referenced by: lmimgim 21065 lmimlbs 21857 lmimdim 33655 lnmlmic 43105 | 
| Copyright terms: Public domain | W3C validator |