| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimf1o | Structured version Visualization version GIF version | ||
| Description: An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| Ref | Expression |
|---|---|
| islmim.b | ⊢ 𝐵 = (Base‘𝑅) |
| islmim.c | ⊢ 𝐶 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| lmimf1o | ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islmim.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | islmim.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 3 | 1, 2 | islmim 20976 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) |
| 4 | 3 | simprbi 496 | 1 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 LMHom clmhm 20933 LMIso clmim 20934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-lmhm 20936 df-lmim 20937 |
| This theorem is referenced by: lmimgim 20979 lmimlbs 21752 lmimdim 33606 lnmlmic 43084 |
| Copyright terms: Public domain | W3C validator |