Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlmic Structured version   Visualization version   GIF version

Theorem lnmlmic 43129
Description: Noetherian is an invariant property of modules. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
lnmlmic (𝑅𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM))

Proof of Theorem lnmlmic
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 brlmic 21002 . . 3 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 n0 4300 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆))
31, 2bitri 275 . 2 (𝑅𝑚 𝑆 ↔ ∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆))
4 lmimlmhm 20998 . . . . . 6 (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎 ∈ (𝑅 LMHom 𝑆))
54adantr 480 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑎 ∈ (𝑅 LMHom 𝑆))
6 simpr 484 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑅 ∈ LNoeM)
7 eqid 2731 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2731 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
97, 8lmimf1o 20997 . . . . . . 7 (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
10 f1ofo 6770 . . . . . . 7 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆))
11 forn 6738 . . . . . . 7 (𝑎:(Base‘𝑅)–onto→(Base‘𝑆) → ran 𝑎 = (Base‘𝑆))
129, 10, 113syl 18 . . . . . 6 (𝑎 ∈ (𝑅 LMIso 𝑆) → ran 𝑎 = (Base‘𝑆))
1312adantr 480 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → ran 𝑎 = (Base‘𝑆))
148lnmepi 43126 . . . . 5 ((𝑎 ∈ (𝑅 LMHom 𝑆) ∧ 𝑅 ∈ LNoeM ∧ ran 𝑎 = (Base‘𝑆)) → 𝑆 ∈ LNoeM)
155, 6, 13, 14syl3anc 1373 . . . 4 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑆 ∈ LNoeM)
16 islmim2 21000 . . . . . . 7 (𝑎 ∈ (𝑅 LMIso 𝑆) ↔ (𝑎 ∈ (𝑅 LMHom 𝑆) ∧ 𝑎 ∈ (𝑆 LMHom 𝑅)))
1716simprbi 496 . . . . . 6 (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎 ∈ (𝑆 LMHom 𝑅))
1817adantr 480 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑎 ∈ (𝑆 LMHom 𝑅))
19 simpr 484 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑆 ∈ LNoeM)
20 dfdm4 5834 . . . . . 6 dom 𝑎 = ran 𝑎
21 f1odm 6767 . . . . . . . 8 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → dom 𝑎 = (Base‘𝑅))
229, 21syl 17 . . . . . . 7 (𝑎 ∈ (𝑅 LMIso 𝑆) → dom 𝑎 = (Base‘𝑅))
2322adantr 480 . . . . . 6 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → dom 𝑎 = (Base‘𝑅))
2420, 23eqtr3id 2780 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → ran 𝑎 = (Base‘𝑅))
257lnmepi 43126 . . . . 5 ((𝑎 ∈ (𝑆 LMHom 𝑅) ∧ 𝑆 ∈ LNoeM ∧ ran 𝑎 = (Base‘𝑅)) → 𝑅 ∈ LNoeM)
2618, 19, 24, 25syl3anc 1373 . . . 4 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑅 ∈ LNoeM)
2715, 26impbida 800 . . 3 (𝑎 ∈ (𝑅 LMIso 𝑆) → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM))
2827exlimiv 1931 . 2 (∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆) → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM))
293, 28sylbi 217 1 (𝑅𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  c0 4280   class class class wbr 5089  ccnv 5613  dom cdm 5614  ran crn 5615  ontowfo 6479  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  Basecbs 17120   LMHom clmhm 20953   LMIso clmim 20954  𝑚 clmic 20955  LNoeMclnm 43116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-sca 17177  df-vsca 17178  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-mgp 20059  df-ur 20100  df-ring 20153  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lmhm 20956  df-lmim 20957  df-lmic 20958  df-lfig 43109  df-lnm 43117
This theorem is referenced by:  pwslnmlem2  43134
  Copyright terms: Public domain W3C validator