Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlmic | Structured version Visualization version GIF version |
Description: Noetherian is an invariant property of modules. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
lnmlmic | ⊢ (𝑅 ≃𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brlmic 20245 | . . 3 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
2 | n0 4277 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆)) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ ∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆)) |
4 | lmimlmhm 20241 | . . . . . 6 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎 ∈ (𝑅 LMHom 𝑆)) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑎 ∈ (𝑅 LMHom 𝑆)) |
6 | simpr 484 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑅 ∈ LNoeM) | |
7 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
9 | 7, 8 | lmimf1o 20240 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) |
10 | f1ofo 6707 | . . . . . . 7 ⊢ (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆)) | |
11 | forn 6675 | . . . . . . 7 ⊢ (𝑎:(Base‘𝑅)–onto→(Base‘𝑆) → ran 𝑎 = (Base‘𝑆)) | |
12 | 9, 10, 11 | 3syl 18 | . . . . . 6 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → ran 𝑎 = (Base‘𝑆)) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → ran 𝑎 = (Base‘𝑆)) |
14 | 8 | lnmepi 40826 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMHom 𝑆) ∧ 𝑅 ∈ LNoeM ∧ ran 𝑎 = (Base‘𝑆)) → 𝑆 ∈ LNoeM) |
15 | 5, 6, 13, 14 | syl3anc 1369 | . . . 4 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑆 ∈ LNoeM) |
16 | islmim2 20243 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) ↔ (𝑎 ∈ (𝑅 LMHom 𝑆) ∧ ◡𝑎 ∈ (𝑆 LMHom 𝑅))) | |
17 | 16 | simprbi 496 | . . . . . 6 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → ◡𝑎 ∈ (𝑆 LMHom 𝑅)) |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → ◡𝑎 ∈ (𝑆 LMHom 𝑅)) |
19 | simpr 484 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑆 ∈ LNoeM) | |
20 | dfdm4 5793 | . . . . . 6 ⊢ dom 𝑎 = ran ◡𝑎 | |
21 | f1odm 6704 | . . . . . . . 8 ⊢ (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → dom 𝑎 = (Base‘𝑅)) | |
22 | 9, 21 | syl 17 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → dom 𝑎 = (Base‘𝑅)) |
23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → dom 𝑎 = (Base‘𝑅)) |
24 | 20, 23 | eqtr3id 2793 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → ran ◡𝑎 = (Base‘𝑅)) |
25 | 7 | lnmepi 40826 | . . . . 5 ⊢ ((◡𝑎 ∈ (𝑆 LMHom 𝑅) ∧ 𝑆 ∈ LNoeM ∧ ran ◡𝑎 = (Base‘𝑅)) → 𝑅 ∈ LNoeM) |
26 | 18, 19, 24, 25 | syl3anc 1369 | . . . 4 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑅 ∈ LNoeM) |
27 | 15, 26 | impbida 797 | . . 3 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
28 | 27 | exlimiv 1934 | . 2 ⊢ (∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆) → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
29 | 3, 28 | sylbi 216 | 1 ⊢ (𝑅 ≃𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 ran crn 5581 –onto→wfo 6416 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 LMHom clmhm 20196 LMIso clmim 20197 ≃𝑚 clmic 20198 LNoeMclnm 40816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-sca 16904 df-vsca 16905 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-ghm 18747 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lmhm 20199 df-lmim 20200 df-lmic 20201 df-lfig 40809 df-lnm 40817 |
This theorem is referenced by: pwslnmlem2 40834 |
Copyright terms: Public domain | W3C validator |