Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlmic | Structured version Visualization version GIF version |
Description: Noetherian is an invariant property of modules. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
lnmlmic | ⊢ (𝑅 ≃𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brlmic 20326 | . . 3 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
2 | n0 4286 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆)) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ ∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆)) |
4 | lmimlmhm 20322 | . . . . . 6 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎 ∈ (𝑅 LMHom 𝑆)) | |
5 | 4 | adantr 481 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑎 ∈ (𝑅 LMHom 𝑆)) |
6 | simpr 485 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑅 ∈ LNoeM) | |
7 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | eqid 2740 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
9 | 7, 8 | lmimf1o 20321 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) |
10 | f1ofo 6720 | . . . . . . 7 ⊢ (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆)) | |
11 | forn 6688 | . . . . . . 7 ⊢ (𝑎:(Base‘𝑅)–onto→(Base‘𝑆) → ran 𝑎 = (Base‘𝑆)) | |
12 | 9, 10, 11 | 3syl 18 | . . . . . 6 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → ran 𝑎 = (Base‘𝑆)) |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → ran 𝑎 = (Base‘𝑆)) |
14 | 8 | lnmepi 40905 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMHom 𝑆) ∧ 𝑅 ∈ LNoeM ∧ ran 𝑎 = (Base‘𝑆)) → 𝑆 ∈ LNoeM) |
15 | 5, 6, 13, 14 | syl3anc 1370 | . . . 4 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑆 ∈ LNoeM) |
16 | islmim2 20324 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) ↔ (𝑎 ∈ (𝑅 LMHom 𝑆) ∧ ◡𝑎 ∈ (𝑆 LMHom 𝑅))) | |
17 | 16 | simprbi 497 | . . . . . 6 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → ◡𝑎 ∈ (𝑆 LMHom 𝑅)) |
18 | 17 | adantr 481 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → ◡𝑎 ∈ (𝑆 LMHom 𝑅)) |
19 | simpr 485 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑆 ∈ LNoeM) | |
20 | dfdm4 5802 | . . . . . 6 ⊢ dom 𝑎 = ran ◡𝑎 | |
21 | f1odm 6717 | . . . . . . . 8 ⊢ (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → dom 𝑎 = (Base‘𝑅)) | |
22 | 9, 21 | syl 17 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → dom 𝑎 = (Base‘𝑅)) |
23 | 22 | adantr 481 | . . . . . 6 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → dom 𝑎 = (Base‘𝑅)) |
24 | 20, 23 | eqtr3id 2794 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → ran ◡𝑎 = (Base‘𝑅)) |
25 | 7 | lnmepi 40905 | . . . . 5 ⊢ ((◡𝑎 ∈ (𝑆 LMHom 𝑅) ∧ 𝑆 ∈ LNoeM ∧ ran ◡𝑎 = (Base‘𝑅)) → 𝑅 ∈ LNoeM) |
26 | 18, 19, 24, 25 | syl3anc 1370 | . . . 4 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑅 ∈ LNoeM) |
27 | 15, 26 | impbida 798 | . . 3 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
28 | 27 | exlimiv 1937 | . 2 ⊢ (∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆) → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
29 | 3, 28 | sylbi 216 | 1 ⊢ (𝑅 ≃𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1542 ∃wex 1786 ∈ wcel 2110 ≠ wne 2945 ∅c0 4262 class class class wbr 5079 ◡ccnv 5588 dom cdm 5589 ran crn 5590 –onto→wfo 6429 –1-1-onto→wf1o 6430 ‘cfv 6431 (class class class)co 7269 Basecbs 16908 LMHom clmhm 20277 LMIso clmim 20278 ≃𝑚 clmic 20279 LNoeMclnm 40895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10926 ax-resscn 10927 ax-1cn 10928 ax-icn 10929 ax-addcl 10930 ax-addrcl 10931 ax-mulcl 10932 ax-mulrcl 10933 ax-mulcom 10934 ax-addass 10935 ax-mulass 10936 ax-distr 10937 ax-i2m1 10938 ax-1ne0 10939 ax-1rid 10940 ax-rnegex 10941 ax-rrecex 10942 ax-cnre 10943 ax-pre-lttri 10944 ax-pre-lttrn 10945 ax-pre-ltadd 10946 ax-pre-mulgt0 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-er 8479 df-en 8715 df-dom 8716 df-sdom 8717 df-fin 8718 df-pnf 11010 df-mnf 11011 df-xr 11012 df-ltxr 11013 df-le 11014 df-sub 11205 df-neg 11206 df-nn 11972 df-2 12034 df-3 12035 df-4 12036 df-5 12037 df-6 12038 df-sets 16861 df-slot 16879 df-ndx 16891 df-base 16909 df-ress 16938 df-plusg 16971 df-sca 16974 df-vsca 16975 df-0g 17148 df-mgm 18322 df-sgrp 18371 df-mnd 18382 df-grp 18576 df-minusg 18577 df-sbg 18578 df-subg 18748 df-ghm 18828 df-mgp 19717 df-ur 19734 df-ring 19781 df-lmod 20121 df-lss 20190 df-lsp 20230 df-lmhm 20280 df-lmim 20281 df-lmic 20282 df-lfig 40888 df-lnm 40896 |
This theorem is referenced by: pwslnmlem2 40913 |
Copyright terms: Public domain | W3C validator |