Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnmlmic Structured version   Visualization version   GIF version

Theorem lnmlmic 42654
Description: Noetherian is an invariant property of modules. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
lnmlmic (𝑅𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM))

Proof of Theorem lnmlmic
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 brlmic 20965 . . 3 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 n0 4346 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆))
31, 2bitri 274 . 2 (𝑅𝑚 𝑆 ↔ ∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆))
4 lmimlmhm 20961 . . . . . 6 (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎 ∈ (𝑅 LMHom 𝑆))
54adantr 479 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑎 ∈ (𝑅 LMHom 𝑆))
6 simpr 483 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑅 ∈ LNoeM)
7 eqid 2725 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
8 eqid 2725 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
97, 8lmimf1o 20960 . . . . . . 7 (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
10 f1ofo 6845 . . . . . . 7 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆))
11 forn 6813 . . . . . . 7 (𝑎:(Base‘𝑅)–onto→(Base‘𝑆) → ran 𝑎 = (Base‘𝑆))
129, 10, 113syl 18 . . . . . 6 (𝑎 ∈ (𝑅 LMIso 𝑆) → ran 𝑎 = (Base‘𝑆))
1312adantr 479 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → ran 𝑎 = (Base‘𝑆))
148lnmepi 42651 . . . . 5 ((𝑎 ∈ (𝑅 LMHom 𝑆) ∧ 𝑅 ∈ LNoeM ∧ ran 𝑎 = (Base‘𝑆)) → 𝑆 ∈ LNoeM)
155, 6, 13, 14syl3anc 1368 . . . 4 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑆 ∈ LNoeM)
16 islmim2 20963 . . . . . . 7 (𝑎 ∈ (𝑅 LMIso 𝑆) ↔ (𝑎 ∈ (𝑅 LMHom 𝑆) ∧ 𝑎 ∈ (𝑆 LMHom 𝑅)))
1716simprbi 495 . . . . . 6 (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎 ∈ (𝑆 LMHom 𝑅))
1817adantr 479 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑎 ∈ (𝑆 LMHom 𝑅))
19 simpr 483 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑆 ∈ LNoeM)
20 dfdm4 5898 . . . . . 6 dom 𝑎 = ran 𝑎
21 f1odm 6842 . . . . . . . 8 (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → dom 𝑎 = (Base‘𝑅))
229, 21syl 17 . . . . . . 7 (𝑎 ∈ (𝑅 LMIso 𝑆) → dom 𝑎 = (Base‘𝑅))
2322adantr 479 . . . . . 6 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → dom 𝑎 = (Base‘𝑅))
2420, 23eqtr3id 2779 . . . . 5 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → ran 𝑎 = (Base‘𝑅))
257lnmepi 42651 . . . . 5 ((𝑎 ∈ (𝑆 LMHom 𝑅) ∧ 𝑆 ∈ LNoeM ∧ ran 𝑎 = (Base‘𝑅)) → 𝑅 ∈ LNoeM)
2618, 19, 24, 25syl3anc 1368 . . . 4 ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑅 ∈ LNoeM)
2715, 26impbida 799 . . 3 (𝑎 ∈ (𝑅 LMIso 𝑆) → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM))
2827exlimiv 1925 . 2 (∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆) → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM))
293, 28sylbi 216 1 (𝑅𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wne 2929  c0 4322   class class class wbr 5149  ccnv 5677  dom cdm 5678  ran crn 5679  ontowfo 6547  1-1-ontowf1o 6548  cfv 6549  (class class class)co 7419  Basecbs 17183   LMHom clmhm 20916   LMIso clmim 20917  𝑚 clmic 20918  LNoeMclnm 42641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-sca 17252  df-vsca 17253  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-ghm 19176  df-mgp 20087  df-ur 20134  df-ring 20187  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lmhm 20919  df-lmim 20920  df-lmic 20921  df-lfig 42634  df-lnm 42642
This theorem is referenced by:  pwslnmlem2  42659
  Copyright terms: Public domain W3C validator