![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lnmlmic | Structured version Visualization version GIF version |
Description: Noetherian is an invariant property of modules. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
lnmlmic | ⊢ (𝑅 ≃𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brlmic 20913 | . . 3 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
2 | n0 4341 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆)) | |
3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ ∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆)) |
4 | lmimlmhm 20909 | . . . . . 6 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎 ∈ (𝑅 LMHom 𝑆)) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑎 ∈ (𝑅 LMHom 𝑆)) |
6 | simpr 484 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑅 ∈ LNoeM) | |
7 | eqid 2726 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | eqid 2726 | . . . . . . . 8 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
9 | 7, 8 | lmimf1o 20908 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → 𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) |
10 | f1ofo 6833 | . . . . . . 7 ⊢ (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → 𝑎:(Base‘𝑅)–onto→(Base‘𝑆)) | |
11 | forn 6801 | . . . . . . 7 ⊢ (𝑎:(Base‘𝑅)–onto→(Base‘𝑆) → ran 𝑎 = (Base‘𝑆)) | |
12 | 9, 10, 11 | 3syl 18 | . . . . . 6 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → ran 𝑎 = (Base‘𝑆)) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → ran 𝑎 = (Base‘𝑆)) |
14 | 8 | lnmepi 42387 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMHom 𝑆) ∧ 𝑅 ∈ LNoeM ∧ ran 𝑎 = (Base‘𝑆)) → 𝑆 ∈ LNoeM) |
15 | 5, 6, 13, 14 | syl3anc 1368 | . . . 4 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑅 ∈ LNoeM) → 𝑆 ∈ LNoeM) |
16 | islmim2 20911 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) ↔ (𝑎 ∈ (𝑅 LMHom 𝑆) ∧ ◡𝑎 ∈ (𝑆 LMHom 𝑅))) | |
17 | 16 | simprbi 496 | . . . . . 6 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → ◡𝑎 ∈ (𝑆 LMHom 𝑅)) |
18 | 17 | adantr 480 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → ◡𝑎 ∈ (𝑆 LMHom 𝑅)) |
19 | simpr 484 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑆 ∈ LNoeM) | |
20 | dfdm4 5888 | . . . . . 6 ⊢ dom 𝑎 = ran ◡𝑎 | |
21 | f1odm 6830 | . . . . . . . 8 ⊢ (𝑎:(Base‘𝑅)–1-1-onto→(Base‘𝑆) → dom 𝑎 = (Base‘𝑅)) | |
22 | 9, 21 | syl 17 | . . . . . . 7 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → dom 𝑎 = (Base‘𝑅)) |
23 | 22 | adantr 480 | . . . . . 6 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → dom 𝑎 = (Base‘𝑅)) |
24 | 20, 23 | eqtr3id 2780 | . . . . 5 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → ran ◡𝑎 = (Base‘𝑅)) |
25 | 7 | lnmepi 42387 | . . . . 5 ⊢ ((◡𝑎 ∈ (𝑆 LMHom 𝑅) ∧ 𝑆 ∈ LNoeM ∧ ran ◡𝑎 = (Base‘𝑅)) → 𝑅 ∈ LNoeM) |
26 | 18, 19, 24, 25 | syl3anc 1368 | . . . 4 ⊢ ((𝑎 ∈ (𝑅 LMIso 𝑆) ∧ 𝑆 ∈ LNoeM) → 𝑅 ∈ LNoeM) |
27 | 15, 26 | impbida 798 | . . 3 ⊢ (𝑎 ∈ (𝑅 LMIso 𝑆) → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
28 | 27 | exlimiv 1925 | . 2 ⊢ (∃𝑎 𝑎 ∈ (𝑅 LMIso 𝑆) → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
29 | 3, 28 | sylbi 216 | 1 ⊢ (𝑅 ≃𝑚 𝑆 → (𝑅 ∈ LNoeM ↔ 𝑆 ∈ LNoeM)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2934 ∅c0 4317 class class class wbr 5141 ◡ccnv 5668 dom cdm 5669 ran crn 5670 –onto→wfo 6534 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7404 Basecbs 17150 LMHom clmhm 20864 LMIso clmim 20865 ≃𝑚 clmic 20866 LNoeMclnm 42377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-sca 17219 df-vsca 17220 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-minusg 18864 df-sbg 18865 df-subg 19047 df-ghm 19136 df-mgp 20037 df-ur 20084 df-ring 20137 df-lmod 20705 df-lss 20776 df-lsp 20816 df-lmhm 20867 df-lmim 20868 df-lmic 20869 df-lfig 42370 df-lnm 42378 |
This theorem is referenced by: pwslnmlem2 42395 |
Copyright terms: Public domain | W3C validator |