MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimgim Structured version   Visualization version   GIF version

Theorem lmimgim 20987
Description: An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
lmimgim (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆))

Proof of Theorem lmimgim
StepHypRef Expression
1 lmimlmhm 20986 . . 3 (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆))
2 lmghm 20953 . . 3 (𝐹 ∈ (𝑅 LMHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
31, 2syl 17 . 2 (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆))
4 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
5 eqid 2729 . . 3 (Base‘𝑆) = (Base‘𝑆)
64, 5lmimf1o 20985 . 2 (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆))
74, 5isgim 19159 . 2 (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)))
83, 6, 7sylanbrc 583 1 (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  Basecbs 17138   GrpHom cghm 19109   GrpIso cgim 19154   LMHom clmhm 20941   LMIso clmim 20942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ghm 19110  df-gim 19156  df-lmhm 20944  df-lmim 20945
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator