![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmimgim | Structured version Visualization version GIF version |
Description: An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
lmimgim | ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmimlmhm 19423 | . . 3 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) | |
2 | lmghm 19390 | . . 3 ⊢ (𝐹 ∈ (𝑅 LMHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
4 | eqid 2825 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | eqid 2825 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
6 | 4, 5 | lmimf1o 19422 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) |
7 | 4, 5 | isgim 18055 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
8 | 3, 6, 7 | sylanbrc 580 | 1 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2166 –1-1-onto→wf1o 6122 ‘cfv 6123 (class class class)co 6905 Basecbs 16222 GrpHom cghm 18008 GrpIso cgim 18050 LMHom clmhm 19378 LMIso clmim 19379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-ghm 18009 df-gim 18052 df-lmhm 19381 df-lmim 19382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |