| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimgim | Structured version Visualization version GIF version | ||
| Description: An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| lmimgim | ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmimlmhm 21002 | . . 3 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) | |
| 2 | lmghm 20969 | . . 3 ⊢ (𝐹 ∈ (𝑅 LMHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 4 | eqid 2733 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | eqid 2733 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 6 | 4, 5 | lmimf1o 21001 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) |
| 7 | 4, 5 | isgim 19178 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
| 8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 GrpHom cghm 19128 GrpIso cgim 19173 LMHom clmhm 20957 LMIso clmim 20958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-map 8760 df-ghm 19129 df-gim 19175 df-lmhm 20960 df-lmim 20961 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |