| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimgim | Structured version Visualization version GIF version | ||
| Description: An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| lmimgim | ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmimlmhm 20999 | . . 3 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) | |
| 2 | lmghm 20966 | . . 3 ⊢ (𝐹 ∈ (𝑅 LMHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 4 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 5 | eqid 2731 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 6 | 4, 5 | lmimf1o 20998 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)) |
| 7 | 4, 5 | isgim 19175 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
| 8 | 3, 6, 7 | sylanbrc 583 | 1 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 GrpHom cghm 19125 GrpIso cgim 19170 LMHom clmhm 20954 LMIso clmim 20955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ghm 19126 df-gim 19172 df-lmhm 20957 df-lmim 20958 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |