MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmimlmhm Structured version   Visualization version   GIF version

Theorem lmimlmhm 20216
Description: An isomorphism of modules is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Assertion
Ref Expression
lmimlmhm (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆))

Proof of Theorem lmimlmhm
StepHypRef Expression
1 eqid 2739 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 eqid 2739 . . 3 (Base‘𝑆) = (Base‘𝑆)
31, 2islmim 20214 . 2 (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆)))
43simplbi 501 1 (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2112  1-1-ontowf1o 6414  cfv 6415  (class class class)co 7252  Basecbs 16815   LMHom clmhm 20171   LMIso clmim 20172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3713  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-ov 7255  df-oprab 7256  df-mpo 7257  df-lmhm 20174  df-lmim 20175
This theorem is referenced by:  lmimgim  20217  lmiclcl  20222  lmicrcl  20223  lmimlbs  20928  lnmlmic  40801
  Copyright terms: Public domain W3C validator