| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimlmhm | Structured version Visualization version GIF version | ||
| Description: An isomorphism of modules is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmimlmhm | ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | 1, 2 | islmim 20975 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 –1-1-onto→wf1o 6512 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 LMHom clmhm 20932 LMIso clmim 20933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-lmhm 20935 df-lmim 20936 |
| This theorem is referenced by: lmimgim 20978 lmiclcl 20983 lmicrcl 20984 lmimlbs 21751 lmimdim 33605 lnmlmic 43070 |
| Copyright terms: Public domain | W3C validator |