Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmimlmhm | Structured version Visualization version GIF version |
Description: An isomorphism of modules is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
Ref | Expression |
---|---|
lmimlmhm | ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | eqid 2739 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
3 | 1, 2 | islmim 20214 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
4 | 3 | simplbi 501 | 1 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 –1-1-onto→wf1o 6414 ‘cfv 6415 (class class class)co 7252 Basecbs 16815 LMHom clmhm 20171 LMIso clmim 20172 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-lmhm 20174 df-lmim 20175 |
This theorem is referenced by: lmimgim 20217 lmiclcl 20222 lmicrcl 20223 lmimlbs 20928 lnmlmic 40801 |
Copyright terms: Public domain | W3C validator |