| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmimlmhm | Structured version Visualization version GIF version | ||
| Description: An isomorphism of modules is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmimlmhm | ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | eqid 2734 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 3 | 1, 2 | islmim 21029 | . 2 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) ↔ (𝐹 ∈ (𝑅 LMHom 𝑆) ∧ 𝐹:(Base‘𝑅)–1-1-onto→(Base‘𝑆))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐹 ∈ (𝑅 LMIso 𝑆) → 𝐹 ∈ (𝑅 LMHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 LMHom clmhm 20986 LMIso clmim 20987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-lmhm 20989 df-lmim 20990 |
| This theorem is referenced by: lmimgim 21032 lmiclcl 21037 lmicrcl 21038 lmimlbs 21810 lmimdim 33589 lnmlmic 43063 |
| Copyright terms: Public domain | W3C validator |