|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > lmle | Structured version Visualization version GIF version | ||
| Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.) | 
| Ref | Expression | 
|---|---|
| lmle.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) | 
| lmle.3 | ⊢ 𝐽 = (MetOpen‘𝐷) | 
| lmle.4 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | 
| lmle.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| lmle.7 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | 
| lmle.8 | ⊢ (𝜑 → 𝑄 ∈ 𝑋) | 
| lmle.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ*) | 
| lmle.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) | 
| Ref | Expression | 
|---|---|
| lmle | ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lmle.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | lmle.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
| 3 | lmle.3 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 4 | 3 | mopntopon 24449 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| 6 | lmle.6 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | lmrel 23238 | . . . . 5 ⊢ Rel (⇝𝑡‘𝐽) | |
| 8 | lmle.7 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 9 | releldm 5955 | . . . . 5 ⊢ ((Rel (⇝𝑡‘𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | |
| 10 | 7, 8, 9 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | 
| 11 | 1, 5, 6, 10 | lmff 23309 | . . 3 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) | 
| 12 | eqid 2737 | . . . 4 ⊢ (ℤ≥‘𝑗) = (ℤ≥‘𝑗) | |
| 13 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) | 
| 14 | simprl 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ 𝑍) | |
| 15 | 14, 1 | eleqtrdi 2851 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ (ℤ≥‘𝑀)) | 
| 16 | eluzelz 12888 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ ℤ) | 
| 18 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝐹(⇝𝑡‘𝐽)𝑃) | 
| 19 | oveq2 7439 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑘) → (𝑄𝐷𝑥) = (𝑄𝐷(𝐹‘𝑘))) | |
| 20 | 19 | breq1d 5153 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑘) → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅)) | 
| 21 | fvres 6925 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑗) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) | |
| 22 | 21 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) | 
| 23 | simprr 773 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) | |
| 24 | 23 | ffvelcdmda 7104 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) ∈ 𝑋) | 
| 25 | 22, 24 | eqeltrrd 2842 | . . . . 5 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ 𝑋) | 
| 26 | 1 | uztrn2 12897 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) | 
| 27 | 14, 26 | sylan 580 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) | 
| 28 | lmle.10 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) | |
| 29 | 28 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) | 
| 30 | 27, 29 | syldan 591 | . . . . 5 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) | 
| 31 | 20, 25, 30 | elrabd 3694 | . . . 4 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) | 
| 32 | lmle.8 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑋) | |
| 33 | lmle.9 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 34 | eqid 2737 | . . . . . . 7 ⊢ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} = {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} | |
| 35 | 3, 34 | blcld 24518 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) | 
| 36 | 2, 32, 33, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) | 
| 37 | 36 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) | 
| 38 | 12, 13, 17, 18, 31, 37 | lmcld 23311 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) | 
| 39 | 11, 38 | rexlimddv 3161 | . 2 ⊢ (𝜑 → 𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) | 
| 40 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑄𝐷𝑥) = (𝑄𝐷𝑃)) | |
| 41 | 40 | breq1d 5153 | . . . 4 ⊢ (𝑥 = 𝑃 → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷𝑃) ≤ 𝑅)) | 
| 42 | 41 | elrab 3692 | . . 3 ⊢ (𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ (𝑃 ∈ 𝑋 ∧ (𝑄𝐷𝑃) ≤ 𝑅)) | 
| 43 | 42 | simprbi 496 | . 2 ⊢ (𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} → (𝑄𝐷𝑃) ≤ 𝑅) | 
| 44 | 39, 43 | syl 17 | 1 ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3436 class class class wbr 5143 dom cdm 5685 ↾ cres 5687 Rel wrel 5690 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ℝ*cxr 11294 ≤ cle 11296 ℤcz 12613 ℤ≥cuz 12878 ∞Metcxmet 21349 MetOpencmopn 21354 TopOnctopon 22916 Clsdccld 23024 ⇝𝑡clm 23234 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-topgen 17488 df-psmet 21356 df-xmet 21357 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-lm 23237 | 
| This theorem is referenced by: nglmle 25336 minvecolem4 30899 | 
| Copyright terms: Public domain | W3C validator |