MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmle Structured version   Visualization version   GIF version

Theorem lmle 23511
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmle.1 𝑍 = (ℤ𝑀)
lmle.3 𝐽 = (MetOpen‘𝐷)
lmle.4 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmle.6 (𝜑𝑀 ∈ ℤ)
lmle.7 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmle.8 (𝜑𝑄𝑋)
lmle.9 (𝜑𝑅 ∈ ℝ*)
lmle.10 ((𝜑𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
Assertion
Ref Expression
lmle (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝜑,𝑘   𝑘,𝑍   𝑘,𝐹   𝑃,𝑘   𝑄,𝑘   𝑅,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem lmle
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmle.1 . . . 4 𝑍 = (ℤ𝑀)
2 lmle.4 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 lmle.3 . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopntopon 22656 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
52, 4syl 17 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 lmle.6 . . . 4 (𝜑𝑀 ∈ ℤ)
7 lmrel 21446 . . . . 5 Rel (⇝𝑡𝐽)
8 lmle.7 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
9 releldm 5606 . . . . 5 ((Rel (⇝𝑡𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡𝐽))
107, 8, 9sylancr 581 . . . 4 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
111, 5, 6, 10lmff 21517 . . 3 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
12 eqid 2778 . . . 4 (ℤ𝑗) = (ℤ𝑗)
135adantr 474 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
14 simprl 761 . . . . . 6 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗𝑍)
1514, 1syl6eleq 2869 . . . . 5 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗 ∈ (ℤ𝑀))
16 eluzelz 12006 . . . . 5 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1715, 16syl 17 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗 ∈ ℤ)
188adantr 474 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝐹(⇝𝑡𝐽)𝑃)
19 fvres 6467 . . . . . . 7 (𝑘 ∈ (ℤ𝑗) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
2019adantl 475 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
21 simprr 763 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
2221ffvelrnda 6625 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) ∈ 𝑋)
2320, 22eqeltrrd 2860 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
241uztrn2 12014 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2514, 24sylan 575 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
26 lmle.10 . . . . . . 7 ((𝜑𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
2726adantlr 705 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
2825, 27syldan 585 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
29 oveq2 6932 . . . . . . 7 (𝑥 = (𝐹𝑘) → (𝑄𝐷𝑥) = (𝑄𝐷(𝐹𝑘)))
3029breq1d 4898 . . . . . 6 (𝑥 = (𝐹𝑘) → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷(𝐹𝑘)) ≤ 𝑅))
3130elrab 3572 . . . . 5 ((𝐹𝑘) ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ ((𝐹𝑘) ∈ 𝑋 ∧ (𝑄𝐷(𝐹𝑘)) ≤ 𝑅))
3223, 28, 31sylanbrc 578 . . . 4 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
33 lmle.8 . . . . . 6 (𝜑𝑄𝑋)
34 lmle.9 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
35 eqid 2778 . . . . . . 7 {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} = {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}
363, 35blcld 22722 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑅 ∈ ℝ*) → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
372, 33, 34, 36syl3anc 1439 . . . . 5 (𝜑 → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
3837adantr 474 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
3912, 13, 17, 18, 32, 38lmcld 21519 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
4011, 39rexlimddv 3218 . 2 (𝜑𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
41 oveq2 6932 . . . . 5 (𝑥 = 𝑃 → (𝑄𝐷𝑥) = (𝑄𝐷𝑃))
4241breq1d 4898 . . . 4 (𝑥 = 𝑃 → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷𝑃) ≤ 𝑅))
4342elrab 3572 . . 3 (𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ (𝑃𝑋 ∧ (𝑄𝐷𝑃) ≤ 𝑅))
4443simprbi 492 . 2 (𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} → (𝑄𝐷𝑃) ≤ 𝑅)
4540, 44syl 17 1 (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  {crab 3094   class class class wbr 4888  dom cdm 5357  cres 5359  Rel wrel 5362  wf 6133  cfv 6137  (class class class)co 6924  *cxr 10412  cle 10414  cz 11732  cuz 11996  ∞Metcxmet 20131  MetOpencmopn 20136  TopOnctopon 21126  Clsdccld 21232  𝑡clm 21442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-1st 7447  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-map 8144  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-sup 8638  df-inf 8639  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-n0 11647  df-z 11733  df-uz 11997  df-q 12100  df-rp 12142  df-xneg 12261  df-xadd 12262  df-xmul 12263  df-topgen 16494  df-psmet 20138  df-xmet 20139  df-bl 20141  df-mopn 20142  df-top 21110  df-topon 21127  df-bases 21162  df-cld 21235  df-ntr 21236  df-cls 21237  df-lm 21445
This theorem is referenced by:  nglmle  23512  minvecolem4  28312
  Copyright terms: Public domain W3C validator