MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmle Structured version   Visualization version   GIF version

Theorem lmle 25258
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmle.1 𝑍 = (ℤ𝑀)
lmle.3 𝐽 = (MetOpen‘𝐷)
lmle.4 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmle.6 (𝜑𝑀 ∈ ℤ)
lmle.7 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmle.8 (𝜑𝑄𝑋)
lmle.9 (𝜑𝑅 ∈ ℝ*)
lmle.10 ((𝜑𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
Assertion
Ref Expression
lmle (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝜑,𝑘   𝑘,𝑍   𝑘,𝐹   𝑃,𝑘   𝑄,𝑘   𝑅,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem lmle
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmle.1 . . . 4 𝑍 = (ℤ𝑀)
2 lmle.4 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 lmle.3 . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopntopon 24383 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
52, 4syl 17 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 lmle.6 . . . 4 (𝜑𝑀 ∈ ℤ)
7 lmrel 23173 . . . . 5 Rel (⇝𝑡𝐽)
8 lmle.7 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
9 releldm 5929 . . . . 5 ((Rel (⇝𝑡𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡𝐽))
107, 8, 9sylancr 587 . . . 4 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
111, 5, 6, 10lmff 23244 . . 3 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
12 eqid 2736 . . . 4 (ℤ𝑗) = (ℤ𝑗)
135adantr 480 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
14 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗𝑍)
1514, 1eleqtrdi 2845 . . . . 5 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗 ∈ (ℤ𝑀))
16 eluzelz 12867 . . . . 5 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1715, 16syl 17 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗 ∈ ℤ)
188adantr 480 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝐹(⇝𝑡𝐽)𝑃)
19 oveq2 7418 . . . . . 6 (𝑥 = (𝐹𝑘) → (𝑄𝐷𝑥) = (𝑄𝐷(𝐹𝑘)))
2019breq1d 5134 . . . . 5 (𝑥 = (𝐹𝑘) → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷(𝐹𝑘)) ≤ 𝑅))
21 fvres 6900 . . . . . . 7 (𝑘 ∈ (ℤ𝑗) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
2221adantl 481 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
23 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
2423ffvelcdmda 7079 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) ∈ 𝑋)
2522, 24eqeltrrd 2836 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
261uztrn2 12876 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2714, 26sylan 580 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
28 lmle.10 . . . . . . 7 ((𝜑𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
2928adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
3027, 29syldan 591 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
3120, 25, 30elrabd 3678 . . . 4 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
32 lmle.8 . . . . . 6 (𝜑𝑄𝑋)
33 lmle.9 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
34 eqid 2736 . . . . . . 7 {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} = {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}
353, 34blcld 24449 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑅 ∈ ℝ*) → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
362, 32, 33, 35syl3anc 1373 . . . . 5 (𝜑 → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
3736adantr 480 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
3812, 13, 17, 18, 31, 37lmcld 23246 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
3911, 38rexlimddv 3148 . 2 (𝜑𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
40 oveq2 7418 . . . . 5 (𝑥 = 𝑃 → (𝑄𝐷𝑥) = (𝑄𝐷𝑃))
4140breq1d 5134 . . . 4 (𝑥 = 𝑃 → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷𝑃) ≤ 𝑅))
4241elrab 3676 . . 3 (𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ (𝑃𝑋 ∧ (𝑄𝐷𝑃) ≤ 𝑅))
4342simprbi 496 . 2 (𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} → (𝑄𝐷𝑃) ≤ 𝑅)
4439, 43syl 17 1 (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420   class class class wbr 5124  dom cdm 5659  cres 5661  Rel wrel 5664  wf 6532  cfv 6536  (class class class)co 7410  *cxr 11273  cle 11275  cz 12593  cuz 12857  ∞Metcxmet 21305  MetOpencmopn 21310  TopOnctopon 22853  Clsdccld 22959  𝑡clm 23169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-topgen 17462  df-psmet 21312  df-xmet 21313  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-lm 23172
This theorem is referenced by:  nglmle  25259  minvecolem4  30866
  Copyright terms: Public domain W3C validator