![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmle | Structured version Visualization version GIF version |
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.) |
Ref | Expression |
---|---|
lmle.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
lmle.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
lmle.4 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
lmle.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
lmle.7 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
lmle.8 | ⊢ (𝜑 → 𝑄 ∈ 𝑋) |
lmle.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
lmle.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
Ref | Expression |
---|---|
lmle | ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmle.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | lmle.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
3 | lmle.3 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
4 | 3 | mopntopon 24465 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
6 | lmle.6 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
7 | lmrel 23254 | . . . . 5 ⊢ Rel (⇝𝑡‘𝐽) | |
8 | lmle.7 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
9 | releldm 5958 | . . . . 5 ⊢ ((Rel (⇝𝑡‘𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | |
10 | 7, 8, 9 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
11 | 1, 5, 6, 10 | lmff 23325 | . . 3 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) |
12 | eqid 2735 | . . . 4 ⊢ (ℤ≥‘𝑗) = (ℤ≥‘𝑗) | |
13 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
14 | simprl 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ 𝑍) | |
15 | 14, 1 | eleqtrdi 2849 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
16 | eluzelz 12886 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ ℤ) |
18 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝐹(⇝𝑡‘𝐽)𝑃) |
19 | oveq2 7439 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑘) → (𝑄𝐷𝑥) = (𝑄𝐷(𝐹‘𝑘))) | |
20 | 19 | breq1d 5158 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑘) → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅)) |
21 | fvres 6926 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑗) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) | |
22 | 21 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) |
23 | simprr 773 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) | |
24 | 23 | ffvelcdmda 7104 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) ∈ 𝑋) |
25 | 22, 24 | eqeltrrd 2840 | . . . . 5 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ 𝑋) |
26 | 1 | uztrn2 12895 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
27 | 14, 26 | sylan 580 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
28 | lmle.10 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) | |
29 | 28 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
30 | 27, 29 | syldan 591 | . . . . 5 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
31 | 20, 25, 30 | elrabd 3697 | . . . 4 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
32 | lmle.8 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑋) | |
33 | lmle.9 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
34 | eqid 2735 | . . . . . . 7 ⊢ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} = {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} | |
35 | 3, 34 | blcld 24534 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
36 | 2, 32, 33, 35 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
37 | 36 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
38 | 12, 13, 17, 18, 31, 37 | lmcld 23327 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
39 | 11, 38 | rexlimddv 3159 | . 2 ⊢ (𝜑 → 𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
40 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑄𝐷𝑥) = (𝑄𝐷𝑃)) | |
41 | 40 | breq1d 5158 | . . . 4 ⊢ (𝑥 = 𝑃 → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷𝑃) ≤ 𝑅)) |
42 | 41 | elrab 3695 | . . 3 ⊢ (𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ (𝑃 ∈ 𝑋 ∧ (𝑄𝐷𝑃) ≤ 𝑅)) |
43 | 42 | simprbi 496 | . 2 ⊢ (𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} → (𝑄𝐷𝑃) ≤ 𝑅) |
44 | 39, 43 | syl 17 | 1 ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {crab 3433 class class class wbr 5148 dom cdm 5689 ↾ cres 5691 Rel wrel 5694 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ℝ*cxr 11292 ≤ cle 11294 ℤcz 12611 ℤ≥cuz 12876 ∞Metcxmet 21367 MetOpencmopn 21372 TopOnctopon 22932 Clsdccld 23040 ⇝𝑡clm 23250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-pm 8868 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-topgen 17490 df-psmet 21374 df-xmet 21375 df-bl 21377 df-mopn 21378 df-top 22916 df-topon 22933 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-lm 23253 |
This theorem is referenced by: nglmle 25350 minvecolem4 30909 |
Copyright terms: Public domain | W3C validator |