MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmle Structured version   Visualization version   GIF version

Theorem lmle 25354
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmle.1 𝑍 = (ℤ𝑀)
lmle.3 𝐽 = (MetOpen‘𝐷)
lmle.4 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmle.6 (𝜑𝑀 ∈ ℤ)
lmle.7 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmle.8 (𝜑𝑄𝑋)
lmle.9 (𝜑𝑅 ∈ ℝ*)
lmle.10 ((𝜑𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
Assertion
Ref Expression
lmle (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝜑,𝑘   𝑘,𝑍   𝑘,𝐹   𝑃,𝑘   𝑄,𝑘   𝑅,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem lmle
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmle.1 . . . 4 𝑍 = (ℤ𝑀)
2 lmle.4 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 lmle.3 . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopntopon 24470 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
52, 4syl 17 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 lmle.6 . . . 4 (𝜑𝑀 ∈ ℤ)
7 lmrel 23259 . . . . 5 Rel (⇝𝑡𝐽)
8 lmle.7 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
9 releldm 5969 . . . . 5 ((Rel (⇝𝑡𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡𝐽))
107, 8, 9sylancr 586 . . . 4 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
111, 5, 6, 10lmff 23330 . . 3 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
12 eqid 2740 . . . 4 (ℤ𝑗) = (ℤ𝑗)
135adantr 480 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
14 simprl 770 . . . . . 6 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗𝑍)
1514, 1eleqtrdi 2854 . . . . 5 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗 ∈ (ℤ𝑀))
16 eluzelz 12913 . . . . 5 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1715, 16syl 17 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗 ∈ ℤ)
188adantr 480 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝐹(⇝𝑡𝐽)𝑃)
19 oveq2 7456 . . . . . 6 (𝑥 = (𝐹𝑘) → (𝑄𝐷𝑥) = (𝑄𝐷(𝐹𝑘)))
2019breq1d 5176 . . . . 5 (𝑥 = (𝐹𝑘) → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷(𝐹𝑘)) ≤ 𝑅))
21 fvres 6939 . . . . . . 7 (𝑘 ∈ (ℤ𝑗) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
2221adantl 481 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
23 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
2423ffvelcdmda 7118 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) ∈ 𝑋)
2522, 24eqeltrrd 2845 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
261uztrn2 12922 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2714, 26sylan 579 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
28 lmle.10 . . . . . . 7 ((𝜑𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
2928adantlr 714 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
3027, 29syldan 590 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
3120, 25, 30elrabd 3710 . . . 4 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
32 lmle.8 . . . . . 6 (𝜑𝑄𝑋)
33 lmle.9 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
34 eqid 2740 . . . . . . 7 {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} = {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}
353, 34blcld 24539 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑅 ∈ ℝ*) → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
362, 32, 33, 35syl3anc 1371 . . . . 5 (𝜑 → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
3736adantr 480 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
3812, 13, 17, 18, 31, 37lmcld 23332 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
3911, 38rexlimddv 3167 . 2 (𝜑𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
40 oveq2 7456 . . . . 5 (𝑥 = 𝑃 → (𝑄𝐷𝑥) = (𝑄𝐷𝑃))
4140breq1d 5176 . . . 4 (𝑥 = 𝑃 → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷𝑃) ≤ 𝑅))
4241elrab 3708 . . 3 (𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ (𝑃𝑋 ∧ (𝑄𝐷𝑃) ≤ 𝑅))
4342simprbi 496 . 2 (𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} → (𝑄𝐷𝑃) ≤ 𝑅)
4439, 43syl 17 1 (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443   class class class wbr 5166  dom cdm 5700  cres 5702  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  *cxr 11323  cle 11325  cz 12639  cuz 12903  ∞Metcxmet 21372  MetOpencmopn 21377  TopOnctopon 22937  Clsdccld 23045  𝑡clm 23255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-lm 23258
This theorem is referenced by:  nglmle  25355  minvecolem4  30912
  Copyright terms: Public domain W3C validator