MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmle Structured version   Visualization version   GIF version

Theorem lmle 25335
Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
lmle.1 𝑍 = (ℤ𝑀)
lmle.3 𝐽 = (MetOpen‘𝐷)
lmle.4 (𝜑𝐷 ∈ (∞Met‘𝑋))
lmle.6 (𝜑𝑀 ∈ ℤ)
lmle.7 (𝜑𝐹(⇝𝑡𝐽)𝑃)
lmle.8 (𝜑𝑄𝑋)
lmle.9 (𝜑𝑅 ∈ ℝ*)
lmle.10 ((𝜑𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
Assertion
Ref Expression
lmle (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅)
Distinct variable groups:   𝐷,𝑘   𝑘,𝐽   𝜑,𝑘   𝑘,𝑍   𝑘,𝐹   𝑃,𝑘   𝑄,𝑘   𝑅,𝑘   𝑘,𝑋
Allowed substitution hint:   𝑀(𝑘)

Proof of Theorem lmle
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmle.1 . . . 4 𝑍 = (ℤ𝑀)
2 lmle.4 . . . . 5 (𝜑𝐷 ∈ (∞Met‘𝑋))
3 lmle.3 . . . . . 6 𝐽 = (MetOpen‘𝐷)
43mopntopon 24449 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
52, 4syl 17 . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 lmle.6 . . . 4 (𝜑𝑀 ∈ ℤ)
7 lmrel 23238 . . . . 5 Rel (⇝𝑡𝐽)
8 lmle.7 . . . . 5 (𝜑𝐹(⇝𝑡𝐽)𝑃)
9 releldm 5955 . . . . 5 ((Rel (⇝𝑡𝐽) ∧ 𝐹(⇝𝑡𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡𝐽))
107, 8, 9sylancr 587 . . . 4 (𝜑𝐹 ∈ dom (⇝𝑡𝐽))
111, 5, 6, 10lmff 23309 . . 3 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
12 eqid 2737 . . . 4 (ℤ𝑗) = (ℤ𝑗)
135adantr 480 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
14 simprl 771 . . . . . 6 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗𝑍)
1514, 1eleqtrdi 2851 . . . . 5 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗 ∈ (ℤ𝑀))
16 eluzelz 12888 . . . . 5 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
1715, 16syl 17 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑗 ∈ ℤ)
188adantr 480 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝐹(⇝𝑡𝐽)𝑃)
19 oveq2 7439 . . . . . 6 (𝑥 = (𝐹𝑘) → (𝑄𝐷𝑥) = (𝑄𝐷(𝐹𝑘)))
2019breq1d 5153 . . . . 5 (𝑥 = (𝐹𝑘) → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷(𝐹𝑘)) ≤ 𝑅))
21 fvres 6925 . . . . . . 7 (𝑘 ∈ (ℤ𝑗) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
2221adantl 481 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) = (𝐹𝑘))
23 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)
2423ffvelcdmda 7104 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹 ↾ (ℤ𝑗))‘𝑘) ∈ 𝑋)
2522, 24eqeltrrd 2842 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ 𝑋)
261uztrn2 12897 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
2714, 26sylan 580 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
28 lmle.10 . . . . . . 7 ((𝜑𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
2928adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘𝑍) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
3027, 29syldan 591 . . . . 5 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑄𝐷(𝐹𝑘)) ≤ 𝑅)
3120, 25, 30elrabd 3694 . . . 4 (((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
32 lmle.8 . . . . . 6 (𝜑𝑄𝑋)
33 lmle.9 . . . . . 6 (𝜑𝑅 ∈ ℝ*)
34 eqid 2737 . . . . . . 7 {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} = {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}
353, 34blcld 24518 . . . . . 6 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄𝑋𝑅 ∈ ℝ*) → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
362, 32, 33, 35syl3anc 1373 . . . . 5 (𝜑 → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
3736adantr 480 . . . 4 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽))
3812, 13, 17, 18, 31, 37lmcld 23311 . . 3 ((𝜑 ∧ (𝑗𝑍 ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶𝑋)) → 𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
3911, 38rexlimddv 3161 . 2 (𝜑𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅})
40 oveq2 7439 . . . . 5 (𝑥 = 𝑃 → (𝑄𝐷𝑥) = (𝑄𝐷𝑃))
4140breq1d 5153 . . . 4 (𝑥 = 𝑃 → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷𝑃) ≤ 𝑅))
4241elrab 3692 . . 3 (𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ (𝑃𝑋 ∧ (𝑄𝐷𝑃) ≤ 𝑅))
4342simprbi 496 . 2 (𝑃 ∈ {𝑥𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} → (𝑄𝐷𝑃) ≤ 𝑅)
4439, 43syl 17 1 (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436   class class class wbr 5143  dom cdm 5685  cres 5687  Rel wrel 5690  wf 6557  cfv 6561  (class class class)co 7431  *cxr 11294  cle 11296  cz 12613  cuz 12878  ∞Metcxmet 21349  MetOpencmopn 21354  TopOnctopon 22916  Clsdccld 23024  𝑡clm 23234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-lm 23237
This theorem is referenced by:  nglmle  25336  minvecolem4  30899
  Copyright terms: Public domain W3C validator