| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmle | Structured version Visualization version GIF version | ||
| Description: If the distance from each member of a converging sequence to a given point is less than or equal to a given amount, so is the convergence value. (Contributed by NM, 23-Dec-2007.) (Proof shortened by Mario Carneiro, 1-May-2014.) |
| Ref | Expression |
|---|---|
| lmle.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| lmle.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| lmle.4 | ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) |
| lmle.6 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| lmle.7 | ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| lmle.8 | ⊢ (𝜑 → 𝑄 ∈ 𝑋) |
| lmle.9 | ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
| lmle.10 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
| Ref | Expression |
|---|---|
| lmle | ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmle.1 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 2 | lmle.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) | |
| 3 | lmle.3 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 4 | 3 | mopntopon 24347 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 6 | lmle.6 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 7 | lmrel 23138 | . . . . 5 ⊢ Rel (⇝𝑡‘𝐽) | |
| 8 | lmle.7 | . . . . 5 ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | |
| 9 | releldm 5881 | . . . . 5 ⊢ ((Rel (⇝𝑡‘𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ dom (⇝𝑡‘𝐽)) | |
| 10 | 7, 8, 9 | sylancr 587 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom (⇝𝑡‘𝐽)) |
| 11 | 1, 5, 6, 10 | lmff 23209 | . . 3 ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) |
| 12 | eqid 2730 | . . . 4 ⊢ (ℤ≥‘𝑗) = (ℤ≥‘𝑗) | |
| 13 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ 𝑍) | |
| 15 | 14, 1 | eleqtrdi 2839 | . . . . 5 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ (ℤ≥‘𝑀)) |
| 16 | eluzelz 12734 | . . . . 5 ⊢ (𝑗 ∈ (ℤ≥‘𝑀) → 𝑗 ∈ ℤ) | |
| 17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑗 ∈ ℤ) |
| 18 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝐹(⇝𝑡‘𝐽)𝑃) |
| 19 | oveq2 7349 | . . . . . 6 ⊢ (𝑥 = (𝐹‘𝑘) → (𝑄𝐷𝑥) = (𝑄𝐷(𝐹‘𝑘))) | |
| 20 | 19 | breq1d 5099 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑘) → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅)) |
| 21 | fvres 6836 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑗) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) | |
| 22 | 21 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) = (𝐹‘𝑘)) |
| 23 | simprr 772 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) | |
| 24 | 23 | ffvelcdmda 7012 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹 ↾ (ℤ≥‘𝑗))‘𝑘) ∈ 𝑋) |
| 25 | 22, 24 | eqeltrrd 2830 | . . . . 5 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ 𝑋) |
| 26 | 1 | uztrn2 12743 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 27 | 14, 26 | sylan 580 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
| 28 | lmle.10 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) | |
| 29 | 28 | adantlr 715 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ 𝑍) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
| 30 | 27, 29 | syldan 591 | . . . . 5 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝑄𝐷(𝐹‘𝑘)) ≤ 𝑅) |
| 31 | 20, 25, 30 | elrabd 3647 | . . . 4 ⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
| 32 | lmle.8 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑋) | |
| 33 | lmle.9 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ ℝ*) | |
| 34 | eqid 2730 | . . . . . . 7 ⊢ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} = {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} | |
| 35 | 3, 34 | blcld 24413 | . . . . . 6 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑄 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
| 36 | 2, 32, 33, 35 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
| 37 | 36 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ∈ (Clsd‘𝐽)) |
| 38 | 12, 13, 17, 18, 31, 37 | lmcld 23211 | . . 3 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋)) → 𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
| 39 | 11, 38 | rexlimddv 3137 | . 2 ⊢ (𝜑 → 𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅}) |
| 40 | oveq2 7349 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑄𝐷𝑥) = (𝑄𝐷𝑃)) | |
| 41 | 40 | breq1d 5099 | . . . 4 ⊢ (𝑥 = 𝑃 → ((𝑄𝐷𝑥) ≤ 𝑅 ↔ (𝑄𝐷𝑃) ≤ 𝑅)) |
| 42 | 41 | elrab 3645 | . . 3 ⊢ (𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} ↔ (𝑃 ∈ 𝑋 ∧ (𝑄𝐷𝑃) ≤ 𝑅)) |
| 43 | 42 | simprbi 496 | . 2 ⊢ (𝑃 ∈ {𝑥 ∈ 𝑋 ∣ (𝑄𝐷𝑥) ≤ 𝑅} → (𝑄𝐷𝑃) ≤ 𝑅) |
| 44 | 39, 43 | syl 17 | 1 ⊢ (𝜑 → (𝑄𝐷𝑃) ≤ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {crab 3393 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 Rel wrel 5619 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ℝ*cxr 11137 ≤ cle 11139 ℤcz 12460 ℤ≥cuz 12724 ∞Metcxmet 21269 MetOpencmopn 21274 TopOnctopon 22818 Clsdccld 22924 ⇝𝑡clm 23134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-topgen 17339 df-psmet 21276 df-xmet 21277 df-bl 21279 df-mopn 21280 df-top 22802 df-topon 22819 df-bases 22854 df-cld 22927 df-ntr 22928 df-cls 22929 df-lm 23137 |
| This theorem is referenced by: nglmle 25222 minvecolem4 30850 |
| Copyright terms: Public domain | W3C validator |