| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | lmrel 23239 | . 2
⊢ Rel
(⇝𝑡‘𝐽) | 
| 2 |  | fvex 6918 | . . . . . . . 8
⊢ ( ⇝
‘(𝑡 ∈ ℕ
↦ ((𝐹‘𝑡)‘𝑚))) ∈ V | 
| 3 |  | rrncms.7 | . . . . . . . 8
⊢ 𝑃 = (𝑚 ∈ 𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑚)))) | 
| 4 | 2, 3 | fnmpti 6710 | . . . . . . 7
⊢ 𝑃 Fn 𝐼 | 
| 5 | 4 | a1i 11 | . . . . . 6
⊢ (𝜑 → 𝑃 Fn 𝐼) | 
| 6 |  | nnuz 12922 | . . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) | 
| 7 |  | 1zzd 12650 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 1 ∈ ℤ) | 
| 8 |  | fveq2 6905 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑘 → (𝐹‘𝑡) = (𝐹‘𝑘)) | 
| 9 | 8 | fveq1d 6907 | . . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑘 → ((𝐹‘𝑡)‘𝑛) = ((𝐹‘𝑘)‘𝑛)) | 
| 10 |  | eqid 2736 | . . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) = (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) | 
| 11 |  | fvex 6918 | . . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘)‘𝑛) ∈ V | 
| 12 | 9, 10, 11 | fvmpt 7015 | . . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) = ((𝐹‘𝑘)‘𝑛)) | 
| 13 | 12 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) = ((𝐹‘𝑘)‘𝑛)) | 
| 14 |  | rrncms.6 | . . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) | 
| 15 | 14 | ffvelcdmda 7103 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) | 
| 16 |  | rrnval.1 | . . . . . . . . . . . . . . . . 17
⊢ 𝑋 = (ℝ ↑m
𝐼) | 
| 17 | 15, 16 | eleqtrdi 2850 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ (ℝ ↑m 𝐼)) | 
| 18 |  | elmapi 8890 | . . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑘) ∈ (ℝ ↑m 𝐼) → (𝐹‘𝑘):𝐼⟶ℝ) | 
| 19 | 17, 18 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘):𝐼⟶ℝ) | 
| 20 | 19 | ffvelcdmda 7103 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝐼) → ((𝐹‘𝑘)‘𝑛) ∈ ℝ) | 
| 21 | 20 | an32s 652 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)‘𝑛) ∈ ℝ) | 
| 22 | 13, 21 | eqeltrd 2840 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) ∈ ℝ) | 
| 23 | 22 | recnd 11290 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) ∈ ℂ) | 
| 24 |  | rrncms.5 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈
(Cau‘(ℝn‘𝐼))) | 
| 25 |  | rrncms.4 | . . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ Fin) | 
| 26 | 16 | rrnmet 37837 | . . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ Fin →
(ℝn‘𝐼) ∈ (Met‘𝑋)) | 
| 27 | 25, 26 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(ℝn‘𝐼) ∈ (Met‘𝑋)) | 
| 28 |  | metxmet 24345 | . . . . . . . . . . . . . . . 16
⊢
((ℝn‘𝐼) ∈ (Met‘𝑋) →
(ℝn‘𝐼) ∈ (∞Met‘𝑋)) | 
| 29 | 27, 28 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 →
(ℝn‘𝐼) ∈ (∞Met‘𝑋)) | 
| 30 |  | 1zzd 12650 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℤ) | 
| 31 |  | eqidd 2737 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) | 
| 32 |  | eqidd 2737 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐹‘𝑗)) | 
| 33 | 6, 29, 30, 31, 32, 14 | iscauf 25315 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 ∈
(Cau‘(ℝn‘𝐼)) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥)) | 
| 34 | 24, 33 | mpbid 232 | . . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥) | 
| 35 | 34 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥) | 
| 36 | 25 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐼 ∈ Fin) | 
| 37 |  | simpllr 775 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑛 ∈ 𝐼) | 
| 38 | 14 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐹:ℕ⟶𝑋) | 
| 39 |  | eluznn 12961 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | 
| 40 | 39 | adantll 714 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) | 
| 41 | 38, 40 | ffvelcdmd 7104 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ 𝑋) | 
| 42 |  | simplr 768 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑗 ∈ ℕ) | 
| 43 | 38, 42 | ffvelcdmd 7104 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑗) ∈ 𝑋) | 
| 44 |  | rrndstprj1.1 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑀 = ((abs ∘ − )
↾ (ℝ × ℝ)) | 
| 45 | 16, 44 | rrndstprj1 37838 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∈ Fin ∧ 𝑛 ∈ 𝐼) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑗) ∈ 𝑋)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑘)(ℝn‘𝐼)(𝐹‘𝑗))) | 
| 46 | 36, 37, 41, 43, 45 | syl22anc 838 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑘)(ℝn‘𝐼)(𝐹‘𝑗))) | 
| 47 | 27 | ad3antrrr 730 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) →
(ℝn‘𝐼) ∈ (Met‘𝑋)) | 
| 48 |  | metsym 24361 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝐹‘𝑘)(ℝn‘𝐼)(𝐹‘𝑗)) = ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘))) | 
| 49 | 47, 41, 43, 48 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘)(ℝn‘𝐼)(𝐹‘𝑗)) = ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘))) | 
| 50 | 46, 49 | breqtrd 5168 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘))) | 
| 51 | 50 | adantllr 719 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘))) | 
| 52 | 44 | remet 24812 | . . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑀 ∈
(Met‘ℝ) | 
| 53 | 52 | a1i 11 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑀 ∈
(Met‘ℝ)) | 
| 54 |  | simpll 766 | . . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝜑 ∧ 𝑛 ∈ 𝐼)) | 
| 55 | 54, 40, 21 | syl2anc 584 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘)‘𝑛) ∈ ℝ) | 
| 56 | 14 | ffvelcdmda 7103 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ 𝑋) | 
| 57 | 56, 16 | eleqtrdi 2850 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ (ℝ ↑m 𝐼)) | 
| 58 |  | elmapi 8890 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑗) ∈ (ℝ ↑m 𝐼) → (𝐹‘𝑗):𝐼⟶ℝ) | 
| 59 | 57, 58 | syl 17 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗):𝐼⟶ℝ) | 
| 60 | 59 | ffvelcdmda 7103 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ 𝐼) → ((𝐹‘𝑗)‘𝑛) ∈ ℝ) | 
| 61 | 60 | an32s 652 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗)‘𝑛) ∈ ℝ) | 
| 62 | 61 | adantr 480 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑗)‘𝑛) ∈ ℝ) | 
| 63 |  | metcl 24343 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ (Met‘ℝ)
∧ ((𝐹‘𝑘)‘𝑛) ∈ ℝ ∧ ((𝐹‘𝑗)‘𝑛) ∈ ℝ) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ∈ ℝ) | 
| 64 | 53, 55, 62, 63 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ∈ ℝ) | 
| 65 | 64 | adantllr 719 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ∈ ℝ) | 
| 66 |  | metcl 24343 | . . . . . . . . . . . . . . . . . . . 20
⊢
(((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∈ ℝ) | 
| 67 | 47, 43, 41, 66 | syl3anc 1372 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∈ ℝ) | 
| 68 | 67 | adantllr 719 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∈ ℝ) | 
| 69 |  | rpre 13044 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) | 
| 70 | 69 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) | 
| 71 | 70 | ad2antrr 726 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑥 ∈ ℝ) | 
| 72 |  | lelttr 11352 | . . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ∈ ℝ ∧ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∧ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) | 
| 73 | 65, 68, 71, 72 | syl3anc 1372 | . . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (((((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∧ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) | 
| 74 | 51, 73 | mpand 695 | . . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥 → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) | 
| 75 | 74 | ralimdva 3166 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) | 
| 76 | 75 | reximdva 3167 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) | 
| 77 | 76 | ralimdva 3166 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) | 
| 78 | 44 | remetdval 24811 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑘)‘𝑛) ∈ ℝ ∧ ((𝐹‘𝑗)‘𝑛) ∈ ℝ) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) = (abs‘(((𝐹‘𝑘)‘𝑛) − ((𝐹‘𝑗)‘𝑛)))) | 
| 79 | 55, 62, 78 | syl2anc 584 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) = (abs‘(((𝐹‘𝑘)‘𝑛) − ((𝐹‘𝑗)‘𝑛)))) | 
| 80 | 40, 12 | syl 17 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) = ((𝐹‘𝑘)‘𝑛)) | 
| 81 |  | fveq2 6905 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑗 → (𝐹‘𝑡) = (𝐹‘𝑗)) | 
| 82 | 81 | fveq1d 6907 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑗 → ((𝐹‘𝑡)‘𝑛) = ((𝐹‘𝑗)‘𝑛)) | 
| 83 |  | fvex 6918 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑗)‘𝑛) ∈ V | 
| 84 | 82, 10, 83 | fvmpt 7015 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗) = ((𝐹‘𝑗)‘𝑛)) | 
| 85 | 84 | ad2antlr 727 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗) = ((𝐹‘𝑗)‘𝑛)) | 
| 86 | 80, 85 | oveq12d 7450 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗)) = (((𝐹‘𝑘)‘𝑛) − ((𝐹‘𝑗)‘𝑛))) | 
| 87 | 86 | fveq2d 6909 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) = (abs‘(((𝐹‘𝑘)‘𝑛) − ((𝐹‘𝑗)‘𝑛)))) | 
| 88 | 79, 87 | eqtr4d 2779 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) = (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗)))) | 
| 89 | 88 | breq1d 5152 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥 ↔ (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥)) | 
| 90 | 89 | ralbidva 3175 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥)) | 
| 91 | 90 | rexbidva 3176 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥)) | 
| 92 | 91 | ralbidv 3177 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥)) | 
| 93 | 77, 92 | sylibd 239 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥)) | 
| 94 | 35, 93 | mpd 15 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥) | 
| 95 |  | nnex 12273 | . . . . . . . . . . . . 13
⊢ ℕ
∈ V | 
| 96 | 95 | mptex 7244 | . . . . . . . . . . . 12
⊢ (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ∈ V | 
| 97 | 96 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ∈ V) | 
| 98 | 6, 23, 94, 97 | caucvg 15716 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ∈ dom ⇝ ) | 
| 99 |  | climdm 15591 | . . . . . . . . . 10
⊢ ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ∈ dom ⇝ ↔ (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ⇝ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)))) | 
| 100 | 98, 99 | sylib 218 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ⇝ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)))) | 
| 101 |  | fveq2 6905 | . . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → ((𝐹‘𝑡)‘𝑚) = ((𝐹‘𝑡)‘𝑛)) | 
| 102 | 101 | mpteq2dv 5243 | . . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑚)) = (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))) | 
| 103 | 102 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑚))) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)))) | 
| 104 |  | fvex 6918 | . . . . . . . . . . 11
⊢ ( ⇝
‘(𝑡 ∈ ℕ
↦ ((𝐹‘𝑡)‘𝑛))) ∈ V | 
| 105 | 103, 3, 104 | fvmpt 7015 | . . . . . . . . . 10
⊢ (𝑛 ∈ 𝐼 → (𝑃‘𝑛) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)))) | 
| 106 | 105 | adantl 481 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑃‘𝑛) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)))) | 
| 107 | 100, 106 | breqtrrd 5170 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ⇝ (𝑃‘𝑛)) | 
| 108 | 6, 7, 107, 22 | climrecl 15620 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑃‘𝑛) ∈ ℝ) | 
| 109 | 108 | ralrimiva 3145 | . . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ 𝐼 (𝑃‘𝑛) ∈ ℝ) | 
| 110 |  | ffnfv 7138 | . . . . . 6
⊢ (𝑃:𝐼⟶ℝ ↔ (𝑃 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑃‘𝑛) ∈ ℝ)) | 
| 111 | 5, 109, 110 | sylanbrc 583 | . . . . 5
⊢ (𝜑 → 𝑃:𝐼⟶ℝ) | 
| 112 |  | reex 11247 | . . . . . 6
⊢ ℝ
∈ V | 
| 113 |  | elmapg 8880 | . . . . . 6
⊢ ((ℝ
∈ V ∧ 𝐼 ∈
Fin) → (𝑃 ∈
(ℝ ↑m 𝐼) ↔ 𝑃:𝐼⟶ℝ)) | 
| 114 | 112, 25, 113 | sylancr 587 | . . . . 5
⊢ (𝜑 → (𝑃 ∈ (ℝ ↑m 𝐼) ↔ 𝑃:𝐼⟶ℝ)) | 
| 115 | 111, 114 | mpbird 257 | . . . 4
⊢ (𝜑 → 𝑃 ∈ (ℝ ↑m 𝐼)) | 
| 116 | 115, 16 | eleqtrrdi 2851 | . . 3
⊢ (𝜑 → 𝑃 ∈ 𝑋) | 
| 117 |  | 1nn 12278 | . . . . . . 7
⊢ 1 ∈
ℕ | 
| 118 | 25 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ Fin) | 
| 119 | 15 | adantlr 715 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) | 
| 120 | 116 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ 𝑋) | 
| 121 | 16 | rrnmval 37836 | . . . . . . . . . . . 12
⊢ ((𝐼 ∈ Fin ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) = (√‘Σ𝑦 ∈ 𝐼 ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2))) | 
| 122 | 118, 119,
120, 121 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) = (√‘Σ𝑦 ∈ 𝐼 ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2))) | 
| 123 |  | simplrr 777 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 = ∅) | 
| 124 | 123 | sumeq1d 15737 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) →
Σ𝑦 ∈ 𝐼 ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2) = Σ𝑦 ∈ ∅ ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2)) | 
| 125 |  | sum0 15758 | . . . . . . . . . . . . 13
⊢
Σ𝑦 ∈
∅ ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2) = 0 | 
| 126 | 124, 125 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) →
Σ𝑦 ∈ 𝐼 ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2) = 0) | 
| 127 | 126 | fveq2d 6909 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) →
(√‘Σ𝑦
∈ 𝐼 ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2)) =
(√‘0)) | 
| 128 | 122, 127 | eqtrd 2776 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) = (√‘0)) | 
| 129 |  | sqrt0 15281 | . . . . . . . . . 10
⊢
(√‘0) = 0 | 
| 130 | 128, 129 | eqtrdi 2792 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) = 0) | 
| 131 |  | simplrl 776 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈
ℝ+) | 
| 132 | 131 | rpgt0d 13081 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 0 <
𝑥) | 
| 133 | 130, 132 | eqbrtrd 5164 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) | 
| 134 | 133 | ralrimiva 3145 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) →
∀𝑘 ∈ ℕ
((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) | 
| 135 |  | fveq2 6905 | . . . . . . . . . 10
⊢ (𝑗 = 1 →
(ℤ≥‘𝑗) =
(ℤ≥‘1)) | 
| 136 | 135, 6 | eqtr4di 2794 | . . . . . . . . 9
⊢ (𝑗 = 1 →
(ℤ≥‘𝑗) = ℕ) | 
| 137 | 136 | raleqdv 3325 | . . . . . . . 8
⊢ (𝑗 = 1 → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) | 
| 138 | 137 | rspcev 3621 | . . . . . . 7
⊢ ((1
∈ ℕ ∧ ∀𝑘 ∈ ℕ ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) | 
| 139 | 117, 134,
138 | sylancr 587 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) | 
| 140 | 139 | expr 456 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐼 = ∅ → ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) | 
| 141 |  | 1zzd 12650 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → 1 ∈ ℤ) | 
| 142 |  | simprl 770 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) → 𝑥 ∈
ℝ+) | 
| 143 |  | simprr 772 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) → 𝐼 ≠ ∅) | 
| 144 | 25 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ Fin) | 
| 145 |  | hashnncl 14406 | . . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ Fin →
((♯‘𝐼) ∈
ℕ ↔ 𝐼 ≠
∅)) | 
| 146 | 144, 145 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
((♯‘𝐼) ∈
ℕ ↔ 𝐼 ≠
∅)) | 
| 147 | 143, 146 | mpbird 257 | . . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(♯‘𝐼) ∈
ℕ) | 
| 148 | 147 | nnrpd 13076 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(♯‘𝐼) ∈
ℝ+) | 
| 149 | 148 | rpsqrtcld 15451 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(√‘(♯‘𝐼)) ∈
ℝ+) | 
| 150 | 142, 149 | rpdivcld 13095 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) → (𝑥 /
(√‘(♯‘𝐼))) ∈
ℝ+) | 
| 151 | 150 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝑥 / (√‘(♯‘𝐼))) ∈
ℝ+) | 
| 152 | 12 | adantl 481 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) = ((𝐹‘𝑘)‘𝑛)) | 
| 153 | 107 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ⇝ (𝑃‘𝑛)) | 
| 154 | 6, 141, 151, 152, 153 | climi2 15548 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼)))) | 
| 155 |  | 1z 12649 | . . . . . . . . . . . 12
⊢ 1 ∈
ℤ | 
| 156 | 6 | rexuz3 15388 | . . . . . . . . . . . 12
⊢ (1 ∈
ℤ → (∃𝑗
∈ ℕ ∀𝑘
∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 157 | 155, 156 | ax-mp 5 | . . . . . . . . . . 11
⊢
(∃𝑗 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼)))) | 
| 158 | 21 | adantllr 719 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)‘𝑛) ∈ ℝ) | 
| 159 | 108 | adantlr 715 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝑃‘𝑛) ∈ ℝ) | 
| 160 | 159 | adantr 480 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑛) ∈ ℝ) | 
| 161 | 44 | remetdval 24811 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑘)‘𝑛) ∈ ℝ ∧ (𝑃‘𝑛) ∈ ℝ) → (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) = (abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛)))) | 
| 162 | 158, 160,
161 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) = (abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛)))) | 
| 163 | 162 | breq1d 5152 | . . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ (abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 164 | 39, 163 | sylan2 593 | . . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ (abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 165 | 164 | anassrs 467 | . . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑥 ∈ ℝ+
∧ 𝐼 ≠ ∅))
∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ (abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 166 | 165 | ralbidva 3175 | . . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 167 | 166 | rexbidva 3176 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 168 | 157, 167 | bitr3id 285 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 169 | 154, 168 | mpbird 257 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼)))) | 
| 170 | 169 | ralrimiva 3145 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
∀𝑛 ∈ 𝐼 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼)))) | 
| 171 | 6 | rexuz3 15388 | . . . . . . . . . 10
⊢ (1 ∈
ℤ → (∃𝑗
∈ ℕ ∀𝑘
∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 172 | 155, 171 | ax-mp 5 | . . . . . . . . 9
⊢
(∃𝑗 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼)))) | 
| 173 |  | rexfiuz 15387 | . . . . . . . . . 10
⊢ (𝐼 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑛 ∈ 𝐼 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 174 | 144, 173 | syl 17 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑛 ∈ 𝐼 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 175 | 172, 174 | bitrid 283 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑛 ∈ 𝐼 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) | 
| 176 | 170, 175 | mpbird 257 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼)))) | 
| 177 | 25 | ad2antrr 726 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ Fin) | 
| 178 |  | simplrr 777 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ≠ ∅) | 
| 179 |  | eldifsn 4785 | . . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (Fin ∖ {∅})
↔ (𝐼 ∈ Fin ∧
𝐼 ≠
∅)) | 
| 180 | 177, 178,
179 | sylanbrc 583 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ (Fin ∖
{∅})) | 
| 181 | 14 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) → 𝐹:ℕ⟶𝑋) | 
| 182 | 181 | ffvelcdmda 7103 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) | 
| 183 | 116 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ 𝑋) | 
| 184 | 150 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (𝑥 /
(√‘(♯‘𝐼))) ∈
ℝ+) | 
| 185 | 16, 44 | rrndstprj2 37839 | . . . . . . . . . . . . . 14
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ((𝑥 / (√‘(♯‘𝐼))) ∈ ℝ+
∧ ∀𝑛 ∈
𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) ·
(√‘(♯‘𝐼)))) | 
| 186 | 185 | expr 456 | . . . . . . . . . . . . 13
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ (𝑥 / (√‘(♯‘𝐼))) ∈ ℝ+)
→ (∀𝑛 ∈
𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) ·
(√‘(♯‘𝐼))))) | 
| 187 | 180, 182,
183, 184, 186 | syl31anc 1374 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) →
(∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) ·
(√‘(♯‘𝐼))))) | 
| 188 |  | simplrl 776 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈
ℝ+) | 
| 189 | 188 | rpcnd 13080 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈
ℂ) | 
| 190 | 149 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) →
(√‘(♯‘𝐼)) ∈
ℝ+) | 
| 191 | 190 | rpcnd 13080 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) →
(√‘(♯‘𝐼)) ∈ ℂ) | 
| 192 | 190 | rpne0d 13083 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) →
(√‘(♯‘𝐼)) ≠ 0) | 
| 193 | 189, 191,
192 | divcan1d 12045 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → ((𝑥 /
(√‘(♯‘𝐼))) ·
(√‘(♯‘𝐼))) = 𝑥) | 
| 194 | 193 | breq2d 5154 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) ·
(√‘(♯‘𝐼))) ↔ ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) | 
| 195 | 187, 194 | sylibd 239 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) →
(∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) | 
| 196 | 39, 195 | sylan2 593 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑗))) → (∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) | 
| 197 | 196 | anassrs 467 | . . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) | 
| 198 | 197 | ralimdva 3166 | . . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑗 ∈ ℕ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) | 
| 199 | 198 | reximdva 3167 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) | 
| 200 | 176, 199 | mpd 15 | . . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) | 
| 201 | 200 | expr 456 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐼 ≠ ∅ →
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) | 
| 202 | 140, 201 | pm2.61dne 3027 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) | 
| 203 | 202 | ralrimiva 3145 | . . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) | 
| 204 |  | rrncms.3 | . . . 4
⊢ 𝐽 =
(MetOpen‘(ℝn‘𝐼)) | 
| 205 | 204, 29, 6, 30, 31, 14 | lmmbrf 25297 | . . 3
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥))) | 
| 206 | 116, 203,
205 | mpbir2and 713 | . 2
⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) | 
| 207 |  | releldm 5954 | . 2
⊢ ((Rel
(⇝𝑡‘𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) | 
| 208 | 1, 206, 207 | sylancr 587 | 1
⊢ (𝜑 → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |