| Step | Hyp | Ref
| Expression |
| 1 | | lmrel 23173 |
. 2
⊢ Rel
(⇝𝑡‘𝐽) |
| 2 | | fvex 6894 |
. . . . . . . 8
⊢ ( ⇝
‘(𝑡 ∈ ℕ
↦ ((𝐹‘𝑡)‘𝑚))) ∈ V |
| 3 | | rrncms.7 |
. . . . . . . 8
⊢ 𝑃 = (𝑚 ∈ 𝐼 ↦ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑚)))) |
| 4 | 2, 3 | fnmpti 6686 |
. . . . . . 7
⊢ 𝑃 Fn 𝐼 |
| 5 | 4 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 𝑃 Fn 𝐼) |
| 6 | | nnuz 12900 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 7 | | 1zzd 12628 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → 1 ∈ ℤ) |
| 8 | | fveq2 6881 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑘 → (𝐹‘𝑡) = (𝐹‘𝑘)) |
| 9 | 8 | fveq1d 6883 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑘 → ((𝐹‘𝑡)‘𝑛) = ((𝐹‘𝑘)‘𝑛)) |
| 10 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) = (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) |
| 11 | | fvex 6894 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹‘𝑘)‘𝑛) ∈ V |
| 12 | 9, 10, 11 | fvmpt 6991 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) = ((𝐹‘𝑘)‘𝑛)) |
| 13 | 12 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) = ((𝐹‘𝑘)‘𝑛)) |
| 14 | | rrncms.6 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹:ℕ⟶𝑋) |
| 15 | 14 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 16 | | rrnval.1 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑋 = (ℝ ↑m
𝐼) |
| 17 | 15, 16 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ (ℝ ↑m 𝐼)) |
| 18 | | elmapi 8868 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹‘𝑘) ∈ (ℝ ↑m 𝐼) → (𝐹‘𝑘):𝐼⟶ℝ) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘):𝐼⟶ℝ) |
| 20 | 19 | ffvelcdmda 7079 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝐼) → ((𝐹‘𝑘)‘𝑛) ∈ ℝ) |
| 21 | 20 | an32s 652 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)‘𝑛) ∈ ℝ) |
| 22 | 13, 21 | eqeltrd 2835 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) ∈ ℝ) |
| 23 | 22 | recnd 11268 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) ∈ ℂ) |
| 24 | | rrncms.5 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 ∈
(Cau‘(ℝn‘𝐼))) |
| 25 | | rrncms.4 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 26 | 16 | rrnmet 37858 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ Fin →
(ℝn‘𝐼) ∈ (Met‘𝑋)) |
| 27 | 25, 26 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 →
(ℝn‘𝐼) ∈ (Met‘𝑋)) |
| 28 | | metxmet 24278 |
. . . . . . . . . . . . . . . 16
⊢
((ℝn‘𝐼) ∈ (Met‘𝑋) →
(ℝn‘𝐼) ∈ (∞Met‘𝑋)) |
| 29 | 27, 28 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
(ℝn‘𝐼) ∈ (∞Met‘𝑋)) |
| 30 | | 1zzd 12628 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 1 ∈
ℤ) |
| 31 | | eqidd 2737 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
| 32 | | eqidd 2737 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) = (𝐹‘𝑗)) |
| 33 | 6, 29, 30, 31, 32, 14 | iscauf 25237 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 ∈
(Cau‘(ℝn‘𝐼)) ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥)) |
| 34 | 24, 33 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥) |
| 35 | 34 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥) |
| 36 | 25 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐼 ∈ Fin) |
| 37 | | simpllr 775 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑛 ∈ 𝐼) |
| 38 | 14 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝐹:ℕ⟶𝑋) |
| 39 | | eluznn 12939 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑗 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
| 40 | 39 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ ℕ) |
| 41 | 38, 40 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ 𝑋) |
| 42 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑗 ∈ ℕ) |
| 43 | 38, 42 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑗) ∈ 𝑋) |
| 44 | | rrndstprj1.1 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑀 = ((abs ∘ − )
↾ (ℝ × ℝ)) |
| 45 | 16, 44 | rrndstprj1 37859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 ∈ Fin ∧ 𝑛 ∈ 𝐼) ∧ ((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑗) ∈ 𝑋)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑘)(ℝn‘𝐼)(𝐹‘𝑗))) |
| 46 | 36, 37, 41, 43, 45 | syl22anc 838 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑘)(ℝn‘𝐼)(𝐹‘𝑗))) |
| 47 | 27 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) →
(ℝn‘𝐼) ∈ (Met‘𝑋)) |
| 48 | | metsym 24294 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ (𝐹‘𝑗) ∈ 𝑋) → ((𝐹‘𝑘)(ℝn‘𝐼)(𝐹‘𝑗)) = ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘))) |
| 49 | 47, 41, 43, 48 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘)(ℝn‘𝐼)(𝐹‘𝑗)) = ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘))) |
| 50 | 46, 49 | breqtrd 5150 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘))) |
| 51 | 50 | adantllr 719 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘))) |
| 52 | 44 | remet 24734 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑀 ∈
(Met‘ℝ) |
| 53 | 52 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑀 ∈
(Met‘ℝ)) |
| 54 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝜑 ∧ 𝑛 ∈ 𝐼)) |
| 55 | 54, 40, 21 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘)‘𝑛) ∈ ℝ) |
| 56 | 14 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ 𝑋) |
| 57 | 56, 16 | eleqtrdi 2845 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗) ∈ (ℝ ↑m 𝐼)) |
| 58 | | elmapi 8868 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐹‘𝑗) ∈ (ℝ ↑m 𝐼) → (𝐹‘𝑗):𝐼⟶ℝ) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐹‘𝑗):𝐼⟶ℝ) |
| 60 | 59 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑛 ∈ 𝐼) → ((𝐹‘𝑗)‘𝑛) ∈ ℝ) |
| 61 | 60 | an32s 652 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) → ((𝐹‘𝑗)‘𝑛) ∈ ℝ) |
| 62 | 61 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑗)‘𝑛) ∈ ℝ) |
| 63 | | metcl 24276 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑀 ∈ (Met‘ℝ)
∧ ((𝐹‘𝑘)‘𝑛) ∈ ℝ ∧ ((𝐹‘𝑗)‘𝑛) ∈ ℝ) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ∈ ℝ) |
| 64 | 53, 55, 62, 63 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ∈ ℝ) |
| 65 | 64 | adantllr 719 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ∈ ℝ) |
| 66 | | metcl 24276 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℝn‘𝐼) ∈ (Met‘𝑋) ∧ (𝐹‘𝑗) ∈ 𝑋 ∧ (𝐹‘𝑘) ∈ 𝑋) → ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∈ ℝ) |
| 67 | 47, 43, 41, 66 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∈ ℝ) |
| 68 | 67 | adantllr 719 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∈ ℝ) |
| 69 | | rpre 13022 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 70 | 69 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
| 71 | 70 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → 𝑥 ∈ ℝ) |
| 72 | | lelttr 11330 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ∈ ℝ ∧ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∧ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) |
| 73 | 65, 68, 71, 72 | syl3anc 1373 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (((((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) ≤ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) ∧ ((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) |
| 74 | 51, 73 | mpand 695 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥 → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) |
| 75 | 74 | ralimdva 3153 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥 → ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) |
| 76 | 75 | reximdva 3154 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑥 ∈ ℝ+) →
(∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥 → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) |
| 77 | 76 | ralimdva 3153 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥)) |
| 78 | 44 | remetdval 24733 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹‘𝑘)‘𝑛) ∈ ℝ ∧ ((𝐹‘𝑗)‘𝑛) ∈ ℝ) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) = (abs‘(((𝐹‘𝑘)‘𝑛) − ((𝐹‘𝑗)‘𝑛)))) |
| 79 | 55, 62, 78 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) = (abs‘(((𝐹‘𝑘)‘𝑛) − ((𝐹‘𝑗)‘𝑛)))) |
| 80 | 40, 12 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) = ((𝐹‘𝑘)‘𝑛)) |
| 81 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑡 = 𝑗 → (𝐹‘𝑡) = (𝐹‘𝑗)) |
| 82 | 81 | fveq1d 6883 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 = 𝑗 → ((𝐹‘𝑡)‘𝑛) = ((𝐹‘𝑗)‘𝑛)) |
| 83 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐹‘𝑗)‘𝑛) ∈ V |
| 84 | 82, 10, 83 | fvmpt 6991 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ ℕ → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗) = ((𝐹‘𝑗)‘𝑛)) |
| 85 | 84 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗) = ((𝐹‘𝑗)‘𝑛)) |
| 86 | 80, 85 | oveq12d 7428 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗)) = (((𝐹‘𝑘)‘𝑛) − ((𝐹‘𝑗)‘𝑛))) |
| 87 | 86 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) = (abs‘(((𝐹‘𝑘)‘𝑛) − ((𝐹‘𝑗)‘𝑛)))) |
| 88 | 79, 87 | eqtr4d 2774 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) = (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗)))) |
| 89 | 88 | breq1d 5134 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥 ↔ (abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥)) |
| 90 | 89 | ralbidva 3162 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥)) |
| 91 | 90 | rexbidva 3163 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥 ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥)) |
| 92 | 91 | ralbidv 3164 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀((𝐹‘𝑗)‘𝑛)) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥)) |
| 93 | 77, 92 | sylibd 239 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑗)(ℝn‘𝐼)(𝐹‘𝑘)) < 𝑥 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥)) |
| 94 | 35, 93 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) − ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑗))) < 𝑥) |
| 95 | | nnex 12251 |
. . . . . . . . . . . . 13
⊢ ℕ
∈ V |
| 96 | 95 | mptex 7220 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ∈ V |
| 97 | 96 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ∈ V) |
| 98 | 6, 23, 94, 97 | caucvg 15700 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ∈ dom ⇝ ) |
| 99 | | climdm 15575 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ∈ dom ⇝ ↔ (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ⇝ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)))) |
| 100 | 98, 99 | sylib 218 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ⇝ ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)))) |
| 101 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑛 → ((𝐹‘𝑡)‘𝑚) = ((𝐹‘𝑡)‘𝑛)) |
| 102 | 101 | mpteq2dv 5220 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑛 → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑚)) = (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))) |
| 103 | 102 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑛 → ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑚))) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)))) |
| 104 | | fvex 6894 |
. . . . . . . . . . 11
⊢ ( ⇝
‘(𝑡 ∈ ℕ
↦ ((𝐹‘𝑡)‘𝑛))) ∈ V |
| 105 | 103, 3, 104 | fvmpt 6991 |
. . . . . . . . . 10
⊢ (𝑛 ∈ 𝐼 → (𝑃‘𝑛) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)))) |
| 106 | 105 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑃‘𝑛) = ( ⇝ ‘(𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)))) |
| 107 | 100, 106 | breqtrrd 5152 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ⇝ (𝑃‘𝑛)) |
| 108 | 6, 7, 107, 22 | climrecl 15604 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝐼) → (𝑃‘𝑛) ∈ ℝ) |
| 109 | 108 | ralrimiva 3133 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ 𝐼 (𝑃‘𝑛) ∈ ℝ) |
| 110 | | ffnfv 7114 |
. . . . . 6
⊢ (𝑃:𝐼⟶ℝ ↔ (𝑃 Fn 𝐼 ∧ ∀𝑛 ∈ 𝐼 (𝑃‘𝑛) ∈ ℝ)) |
| 111 | 5, 109, 110 | sylanbrc 583 |
. . . . 5
⊢ (𝜑 → 𝑃:𝐼⟶ℝ) |
| 112 | | reex 11225 |
. . . . . 6
⊢ ℝ
∈ V |
| 113 | | elmapg 8858 |
. . . . . 6
⊢ ((ℝ
∈ V ∧ 𝐼 ∈
Fin) → (𝑃 ∈
(ℝ ↑m 𝐼) ↔ 𝑃:𝐼⟶ℝ)) |
| 114 | 112, 25, 113 | sylancr 587 |
. . . . 5
⊢ (𝜑 → (𝑃 ∈ (ℝ ↑m 𝐼) ↔ 𝑃:𝐼⟶ℝ)) |
| 115 | 111, 114 | mpbird 257 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ (ℝ ↑m 𝐼)) |
| 116 | 115, 16 | eleqtrrdi 2846 |
. . 3
⊢ (𝜑 → 𝑃 ∈ 𝑋) |
| 117 | | 1nn 12256 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 118 | 25 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ Fin) |
| 119 | 15 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 120 | 116 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ 𝑋) |
| 121 | 16 | rrnmval 37857 |
. . . . . . . . . . . 12
⊢ ((𝐼 ∈ Fin ∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) = (√‘Σ𝑦 ∈ 𝐼 ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2))) |
| 122 | 118, 119,
120, 121 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) = (√‘Σ𝑦 ∈ 𝐼 ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2))) |
| 123 | | simplrr 777 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 = ∅) |
| 124 | 123 | sumeq1d 15721 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) →
Σ𝑦 ∈ 𝐼 ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2) = Σ𝑦 ∈ ∅ ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2)) |
| 125 | | sum0 15742 |
. . . . . . . . . . . . 13
⊢
Σ𝑦 ∈
∅ ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2) = 0 |
| 126 | 124, 125 | eqtrdi 2787 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) →
Σ𝑦 ∈ 𝐼 ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2) = 0) |
| 127 | 126 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) →
(√‘Σ𝑦
∈ 𝐼 ((((𝐹‘𝑘)‘𝑦) − (𝑃‘𝑦))↑2)) =
(√‘0)) |
| 128 | 122, 127 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) = (√‘0)) |
| 129 | | sqrt0 15265 |
. . . . . . . . . 10
⊢
(√‘0) = 0 |
| 130 | 128, 129 | eqtrdi 2787 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) = 0) |
| 131 | | simplrl 776 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈
ℝ+) |
| 132 | 131 | rpgt0d 13059 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → 0 <
𝑥) |
| 133 | 130, 132 | eqbrtrd 5146 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) |
| 134 | 133 | ralrimiva 3133 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) →
∀𝑘 ∈ ℕ
((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) |
| 135 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑗 = 1 →
(ℤ≥‘𝑗) =
(ℤ≥‘1)) |
| 136 | 135, 6 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (𝑗 = 1 →
(ℤ≥‘𝑗) = ℕ) |
| 137 | 136 | raleqdv 3309 |
. . . . . . . 8
⊢ (𝑗 = 1 → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥 ↔ ∀𝑘 ∈ ℕ ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) |
| 138 | 137 | rspcev 3606 |
. . . . . . 7
⊢ ((1
∈ ℕ ∧ ∀𝑘 ∈ ℕ ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) |
| 139 | 117, 134,
138 | sylancr 587 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 = ∅)) → ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) |
| 140 | 139 | expr 456 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐼 = ∅ → ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) |
| 141 | | 1zzd 12628 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → 1 ∈ ℤ) |
| 142 | | simprl 770 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) → 𝑥 ∈
ℝ+) |
| 143 | | simprr 772 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) → 𝐼 ≠ ∅) |
| 144 | 25 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) → 𝐼 ∈ Fin) |
| 145 | | hashnncl 14389 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ Fin →
((♯‘𝐼) ∈
ℕ ↔ 𝐼 ≠
∅)) |
| 146 | 144, 145 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
((♯‘𝐼) ∈
ℕ ↔ 𝐼 ≠
∅)) |
| 147 | 143, 146 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(♯‘𝐼) ∈
ℕ) |
| 148 | 147 | nnrpd 13054 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(♯‘𝐼) ∈
ℝ+) |
| 149 | 148 | rpsqrtcld 15435 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(√‘(♯‘𝐼)) ∈
ℝ+) |
| 150 | 142, 149 | rpdivcld 13073 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) → (𝑥 /
(√‘(♯‘𝐼))) ∈
ℝ+) |
| 151 | 150 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝑥 / (√‘(♯‘𝐼))) ∈
ℝ+) |
| 152 | 12 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛))‘𝑘) = ((𝐹‘𝑘)‘𝑛)) |
| 153 | 107 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝑡 ∈ ℕ ↦ ((𝐹‘𝑡)‘𝑛)) ⇝ (𝑃‘𝑛)) |
| 154 | 6, 141, 151, 152, 153 | climi2 15532 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼)))) |
| 155 | | 1z 12627 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
| 156 | 6 | rexuz3 15372 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℤ → (∃𝑗
∈ ℕ ∀𝑘
∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) |
| 157 | 155, 156 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(∃𝑗 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼)))) |
| 158 | 21 | adantllr 719 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑘)‘𝑛) ∈ ℝ) |
| 159 | 108 | adantlr 715 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (𝑃‘𝑛) ∈ ℝ) |
| 160 | 159 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → (𝑃‘𝑛) ∈ ℝ) |
| 161 | 44 | remetdval 24733 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹‘𝑘)‘𝑛) ∈ ℝ ∧ (𝑃‘𝑛) ∈ ℝ) → (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) = (abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛)))) |
| 162 | 158, 160,
161 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) = (abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛)))) |
| 163 | 162 | breq1d 5134 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ (abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) |
| 164 | 39, 163 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ (abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) |
| 165 | 164 | anassrs 467 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ (𝑥 ∈ ℝ+
∧ 𝐼 ≠ ∅))
∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ (abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) |
| 166 | 165 | ralbidva 3162 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈
(ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) |
| 167 | 166 | rexbidva 3163 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) |
| 168 | 157, 167 | bitr3id 285 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)(abs‘(((𝐹‘𝑘)‘𝑛) − (𝑃‘𝑛))) < (𝑥 / (√‘(♯‘𝐼))))) |
| 169 | 154, 168 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑛 ∈ 𝐼) → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼)))) |
| 170 | 169 | ralrimiva 3133 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
∀𝑛 ∈ 𝐼 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼)))) |
| 171 | 6 | rexuz3 15372 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → (∃𝑗
∈ ℕ ∀𝑘
∈ (ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) |
| 172 | 155, 171 | ax-mp 5 |
. . . . . . . . 9
⊢
(∃𝑗 ∈
ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼)))) |
| 173 | | rexfiuz 15371 |
. . . . . . . . . 10
⊢ (𝐼 ∈ Fin → (∃𝑗 ∈ ℤ ∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑛 ∈ 𝐼 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) |
| 174 | 144, 173 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑛 ∈ 𝐼 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) |
| 175 | 172, 174 | bitrid 283 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) ↔ ∀𝑛 ∈ 𝐼 ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ≥‘𝑗)(((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) |
| 176 | 170, 175 | mpbird 257 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼)))) |
| 177 | 25 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ Fin) |
| 178 | | simplrr 777 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ≠ ∅) |
| 179 | | eldifsn 4767 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (Fin ∖ {∅})
↔ (𝐼 ∈ Fin ∧
𝐼 ≠
∅)) |
| 180 | 177, 178,
179 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝐼 ∈ (Fin ∖
{∅})) |
| 181 | 14 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) → 𝐹:ℕ⟶𝑋) |
| 182 | 181 | ffvelcdmda 7079 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) ∈ 𝑋) |
| 183 | 116 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ 𝑋) |
| 184 | 150 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (𝑥 /
(√‘(♯‘𝐼))) ∈
ℝ+) |
| 185 | 16, 44 | rrndstprj2 37860 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ ((𝑥 / (√‘(♯‘𝐼))) ∈ ℝ+
∧ ∀𝑛 ∈
𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) ·
(√‘(♯‘𝐼)))) |
| 186 | 185 | expr 456 |
. . . . . . . . . . . . 13
⊢ (((𝐼 ∈ (Fin ∖ {∅})
∧ (𝐹‘𝑘) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋) ∧ (𝑥 / (√‘(♯‘𝐼))) ∈ ℝ+)
→ (∀𝑛 ∈
𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) ·
(√‘(♯‘𝐼))))) |
| 187 | 180, 182,
183, 184, 186 | syl31anc 1375 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) →
(∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) ·
(√‘(♯‘𝐼))))) |
| 188 | | simplrl 776 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈
ℝ+) |
| 189 | 188 | rpcnd 13058 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈
ℂ) |
| 190 | 149 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) →
(√‘(♯‘𝐼)) ∈
ℝ+) |
| 191 | 190 | rpcnd 13058 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) →
(√‘(♯‘𝐼)) ∈ ℂ) |
| 192 | 190 | rpne0d 13061 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) →
(√‘(♯‘𝐼)) ≠ 0) |
| 193 | 189, 191,
192 | divcan1d 12023 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → ((𝑥 /
(√‘(♯‘𝐼))) ·
(√‘(♯‘𝐼))) = 𝑥) |
| 194 | 193 | breq2d 5136 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < ((𝑥 / (√‘(♯‘𝐼))) ·
(√‘(♯‘𝐼))) ↔ ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) |
| 195 | 187, 194 | sylibd 239 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑘 ∈ ℕ) →
(∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) |
| 196 | 39, 195 | sylan2 593 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ (𝑗 ∈ ℕ ∧ 𝑘 ∈
(ℤ≥‘𝑗))) → (∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) |
| 197 | 196 | anassrs 467 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈
(ℤ≥‘𝑗)) → (∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) |
| 198 | 197 | ralimdva 3153 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) ∧ 𝑗 ∈ ℕ) →
(∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) |
| 199 | 198 | reximdva 3154 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
(∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)∀𝑛 ∈ 𝐼 (((𝐹‘𝑘)‘𝑛)𝑀(𝑃‘𝑛)) < (𝑥 / (√‘(♯‘𝐼))) → ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) |
| 200 | 176, 199 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 𝐼 ≠ ∅)) →
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) |
| 201 | 200 | expr 456 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐼 ≠ ∅ →
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥)) |
| 202 | 140, 201 | pm2.61dne 3019 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
∃𝑗 ∈ ℕ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) |
| 203 | 202 | ralrimiva 3133 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥) |
| 204 | | rrncms.3 |
. . . 4
⊢ 𝐽 =
(MetOpen‘(ℝn‘𝐼)) |
| 205 | 204, 29, 6, 30, 31, 14 | lmmbrf 25219 |
. . 3
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘)(ℝn‘𝐼)𝑃) < 𝑥))) |
| 206 | 116, 203,
205 | mpbir2and 713 |
. 2
⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃) |
| 207 | | releldm 5929 |
. 2
⊢ ((Rel
(⇝𝑡‘𝐽) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |
| 208 | 1, 206, 207 | sylancr 587 |
1
⊢ (𝜑 → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) |