MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1res Structured version   Visualization version   GIF version

Theorem lo1res 15466
Description: The restriction of an eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
lo1res (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴) ∈ ≤𝑂(1))

Proof of Theorem lo1res
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1f 15425 . . . 4 (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)
2 lo1bdd 15427 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:dom 𝐹⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
31, 2mpdan 687 . . 3 (𝐹 ∈ ≤𝑂(1) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
4 inss1 4184 . . . . . . 7 (dom 𝐹𝐴) ⊆ dom 𝐹
5 ssralv 3998 . . . . . . 7 ((dom 𝐹𝐴) ⊆ dom 𝐹 → (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
64, 5ax-mp 5 . . . . . 6 (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
7 elinel2 4149 . . . . . . . . . 10 (𝑦 ∈ (dom 𝐹𝐴) → 𝑦𝐴)
87fvresd 6842 . . . . . . . . 9 (𝑦 ∈ (dom 𝐹𝐴) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
98breq1d 5099 . . . . . . . 8 (𝑦 ∈ (dom 𝐹𝐴) → (((𝐹𝐴)‘𝑦) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
109imbi2d 340 . . . . . . 7 (𝑦 ∈ (dom 𝐹𝐴) → ((𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚) ↔ (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
1110ralbiia 3076 . . . . . 6 (∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚) ↔ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
126, 11sylibr 234 . . . . 5 (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
1312reximi 3070 . . . 4 (∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
1413reximi 3070 . . 3 (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
153, 14syl 17 . 2 (𝐹 ∈ ≤𝑂(1) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
16 fssres 6689 . . . . 5 ((𝐹:dom 𝐹⟶ℝ ∧ (dom 𝐹𝐴) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ)
171, 4, 16sylancl 586 . . . 4 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ)
18 resres 5940 . . . . . 6 ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹 ↾ (dom 𝐹𝐴))
19 ffn 6651 . . . . . . . 8 (𝐹:dom 𝐹⟶ℝ → 𝐹 Fn dom 𝐹)
20 fnresdm 6600 . . . . . . . 8 (𝐹 Fn dom 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
211, 19, 203syl 18 . . . . . . 7 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ dom 𝐹) = 𝐹)
2221reseq1d 5926 . . . . . 6 (𝐹 ∈ ≤𝑂(1) → ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹𝐴))
2318, 22eqtr3id 2780 . . . . 5 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (dom 𝐹𝐴)) = (𝐹𝐴))
2423feq1d 6633 . . . 4 (𝐹 ∈ ≤𝑂(1) → ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ ↔ (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ))
2517, 24mpbid 232 . . 3 (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
26 lo1dm 15426 . . . 4 (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)
274, 26sstrid 3941 . . 3 (𝐹 ∈ ≤𝑂(1) → (dom 𝐹𝐴) ⊆ ℝ)
28 ello12 15423 . . 3 (((𝐹𝐴):(dom 𝐹𝐴)⟶ℝ ∧ (dom 𝐹𝐴) ⊆ ℝ) → ((𝐹𝐴) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚)))
2925, 27, 28syl2anc 584 . 2 (𝐹 ∈ ≤𝑂(1) → ((𝐹𝐴) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚)))
3015, 29mpbird 257 1 (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cin 3896  wss 3897   class class class wbr 5089  dom cdm 5614  cres 5616   Fn wfn 6476  wf 6477  cfv 6481  cr 11005  cle 11147  ≤𝑂(1)clo1 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ico 13251  df-lo1 15398
This theorem is referenced by:  o1res  15467  lo1res2  15469  lo1resb  15471
  Copyright terms: Public domain W3C validator