MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1res Structured version   Visualization version   GIF version

Theorem lo1res 15120
Description: The restriction of an eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
lo1res (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴) ∈ ≤𝑂(1))

Proof of Theorem lo1res
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1f 15079 . . . 4 (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)
2 lo1bdd 15081 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:dom 𝐹⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
31, 2mpdan 687 . . 3 (𝐹 ∈ ≤𝑂(1) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
4 inss1 4143 . . . . . . 7 (dom 𝐹𝐴) ⊆ dom 𝐹
5 ssralv 3967 . . . . . . 7 ((dom 𝐹𝐴) ⊆ dom 𝐹 → (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
64, 5ax-mp 5 . . . . . 6 (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
7 elinel2 4110 . . . . . . . . . 10 (𝑦 ∈ (dom 𝐹𝐴) → 𝑦𝐴)
87fvresd 6737 . . . . . . . . 9 (𝑦 ∈ (dom 𝐹𝐴) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
98breq1d 5063 . . . . . . . 8 (𝑦 ∈ (dom 𝐹𝐴) → (((𝐹𝐴)‘𝑦) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
109imbi2d 344 . . . . . . 7 (𝑦 ∈ (dom 𝐹𝐴) → ((𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚) ↔ (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
1110ralbiia 3087 . . . . . 6 (∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚) ↔ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
126, 11sylibr 237 . . . . 5 (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
1312reximi 3166 . . . 4 (∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
1413reximi 3166 . . 3 (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
153, 14syl 17 . 2 (𝐹 ∈ ≤𝑂(1) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
16 fssres 6585 . . . . 5 ((𝐹:dom 𝐹⟶ℝ ∧ (dom 𝐹𝐴) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ)
171, 4, 16sylancl 589 . . . 4 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ)
18 resres 5864 . . . . . 6 ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹 ↾ (dom 𝐹𝐴))
19 ffn 6545 . . . . . . . 8 (𝐹:dom 𝐹⟶ℝ → 𝐹 Fn dom 𝐹)
20 fnresdm 6496 . . . . . . . 8 (𝐹 Fn dom 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
211, 19, 203syl 18 . . . . . . 7 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ dom 𝐹) = 𝐹)
2221reseq1d 5850 . . . . . 6 (𝐹 ∈ ≤𝑂(1) → ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹𝐴))
2318, 22eqtr3id 2792 . . . . 5 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (dom 𝐹𝐴)) = (𝐹𝐴))
2423feq1d 6530 . . . 4 (𝐹 ∈ ≤𝑂(1) → ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ ↔ (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ))
2517, 24mpbid 235 . . 3 (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
26 lo1dm 15080 . . . 4 (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)
274, 26sstrid 3912 . . 3 (𝐹 ∈ ≤𝑂(1) → (dom 𝐹𝐴) ⊆ ℝ)
28 ello12 15077 . . 3 (((𝐹𝐴):(dom 𝐹𝐴)⟶ℝ ∧ (dom 𝐹𝐴) ⊆ ℝ) → ((𝐹𝐴) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚)))
2925, 27, 28syl2anc 587 . 2 (𝐹 ∈ ≤𝑂(1) → ((𝐹𝐴) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚)))
3015, 29mpbird 260 1 (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2110  wral 3061  wrex 3062  cin 3865  wss 3866   class class class wbr 5053  dom cdm 5551  cres 5553   Fn wfn 6375  wf 6376  cfv 6380  cr 10728  cle 10868  ≤𝑂(1)clo1 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-pre-lttri 10803  ax-pre-lttrn 10804
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-ico 12941  df-lo1 15052
This theorem is referenced by:  o1res  15121  lo1res2  15123  lo1resb  15125
  Copyright terms: Public domain W3C validator