MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1res Structured version   Visualization version   GIF version

Theorem lo1res 15575
Description: The restriction of an eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
lo1res (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴) ∈ ≤𝑂(1))

Proof of Theorem lo1res
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1f 15534 . . . 4 (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)
2 lo1bdd 15536 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:dom 𝐹⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
31, 2mpdan 687 . . 3 (𝐹 ∈ ≤𝑂(1) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
4 inss1 4212 . . . . . . 7 (dom 𝐹𝐴) ⊆ dom 𝐹
5 ssralv 4027 . . . . . . 7 ((dom 𝐹𝐴) ⊆ dom 𝐹 → (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
64, 5ax-mp 5 . . . . . 6 (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
7 elinel2 4177 . . . . . . . . . 10 (𝑦 ∈ (dom 𝐹𝐴) → 𝑦𝐴)
87fvresd 6896 . . . . . . . . 9 (𝑦 ∈ (dom 𝐹𝐴) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
98breq1d 5129 . . . . . . . 8 (𝑦 ∈ (dom 𝐹𝐴) → (((𝐹𝐴)‘𝑦) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
109imbi2d 340 . . . . . . 7 (𝑦 ∈ (dom 𝐹𝐴) → ((𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚) ↔ (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
1110ralbiia 3080 . . . . . 6 (∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚) ↔ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
126, 11sylibr 234 . . . . 5 (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
1312reximi 3074 . . . 4 (∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
1413reximi 3074 . . 3 (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
153, 14syl 17 . 2 (𝐹 ∈ ≤𝑂(1) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
16 fssres 6744 . . . . 5 ((𝐹:dom 𝐹⟶ℝ ∧ (dom 𝐹𝐴) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ)
171, 4, 16sylancl 586 . . . 4 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ)
18 resres 5979 . . . . . 6 ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹 ↾ (dom 𝐹𝐴))
19 ffn 6706 . . . . . . . 8 (𝐹:dom 𝐹⟶ℝ → 𝐹 Fn dom 𝐹)
20 fnresdm 6657 . . . . . . . 8 (𝐹 Fn dom 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
211, 19, 203syl 18 . . . . . . 7 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ dom 𝐹) = 𝐹)
2221reseq1d 5965 . . . . . 6 (𝐹 ∈ ≤𝑂(1) → ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹𝐴))
2318, 22eqtr3id 2784 . . . . 5 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (dom 𝐹𝐴)) = (𝐹𝐴))
2423feq1d 6690 . . . 4 (𝐹 ∈ ≤𝑂(1) → ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ ↔ (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ))
2517, 24mpbid 232 . . 3 (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
26 lo1dm 15535 . . . 4 (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)
274, 26sstrid 3970 . . 3 (𝐹 ∈ ≤𝑂(1) → (dom 𝐹𝐴) ⊆ ℝ)
28 ello12 15532 . . 3 (((𝐹𝐴):(dom 𝐹𝐴)⟶ℝ ∧ (dom 𝐹𝐴) ⊆ ℝ) → ((𝐹𝐴) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚)))
2925, 27, 28syl2anc 584 . 2 (𝐹 ∈ ≤𝑂(1) → ((𝐹𝐴) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚)))
3015, 29mpbird 257 1 (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cin 3925  wss 3926   class class class wbr 5119  dom cdm 5654  cres 5656   Fn wfn 6526  wf 6527  cfv 6531  cr 11128  cle 11270  ≤𝑂(1)clo1 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-pre-lttri 11203  ax-pre-lttrn 11204
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-ico 13368  df-lo1 15507
This theorem is referenced by:  o1res  15576  lo1res2  15578  lo1resb  15580
  Copyright terms: Public domain W3C validator