MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1res Structured version   Visualization version   GIF version

Theorem lo1res 15268
Description: The restriction of an eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
lo1res (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴) ∈ ≤𝑂(1))

Proof of Theorem lo1res
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lo1f 15227 . . . 4 (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)
2 lo1bdd 15229 . . . 4 ((𝐹 ∈ ≤𝑂(1) ∧ 𝐹:dom 𝐹⟶ℝ) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
31, 2mpdan 684 . . 3 (𝐹 ∈ ≤𝑂(1) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
4 inss1 4162 . . . . . . 7 (dom 𝐹𝐴) ⊆ dom 𝐹
5 ssralv 3987 . . . . . . 7 ((dom 𝐹𝐴) ⊆ dom 𝐹 → (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
64, 5ax-mp 5 . . . . . 6 (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
7 elinel2 4130 . . . . . . . . . 10 (𝑦 ∈ (dom 𝐹𝐴) → 𝑦𝐴)
87fvresd 6794 . . . . . . . . 9 (𝑦 ∈ (dom 𝐹𝐴) → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
98breq1d 5084 . . . . . . . 8 (𝑦 ∈ (dom 𝐹𝐴) → (((𝐹𝐴)‘𝑦) ≤ 𝑚 ↔ (𝐹𝑦) ≤ 𝑚))
109imbi2d 341 . . . . . . 7 (𝑦 ∈ (dom 𝐹𝐴) → ((𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚) ↔ (𝑥𝑦 → (𝐹𝑦) ≤ 𝑚)))
1110ralbiia 3091 . . . . . 6 (∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚) ↔ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚))
126, 11sylibr 233 . . . . 5 (∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
1312reximi 3178 . . . 4 (∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
1413reximi 3178 . . 3 (∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ dom 𝐹(𝑥𝑦 → (𝐹𝑦) ≤ 𝑚) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
153, 14syl 17 . 2 (𝐹 ∈ ≤𝑂(1) → ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚))
16 fssres 6640 . . . . 5 ((𝐹:dom 𝐹⟶ℝ ∧ (dom 𝐹𝐴) ⊆ dom 𝐹) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ)
171, 4, 16sylancl 586 . . . 4 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ)
18 resres 5904 . . . . . 6 ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹 ↾ (dom 𝐹𝐴))
19 ffn 6600 . . . . . . . 8 (𝐹:dom 𝐹⟶ℝ → 𝐹 Fn dom 𝐹)
20 fnresdm 6551 . . . . . . . 8 (𝐹 Fn dom 𝐹 → (𝐹 ↾ dom 𝐹) = 𝐹)
211, 19, 203syl 18 . . . . . . 7 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ dom 𝐹) = 𝐹)
2221reseq1d 5890 . . . . . 6 (𝐹 ∈ ≤𝑂(1) → ((𝐹 ↾ dom 𝐹) ↾ 𝐴) = (𝐹𝐴))
2318, 22eqtr3id 2792 . . . . 5 (𝐹 ∈ ≤𝑂(1) → (𝐹 ↾ (dom 𝐹𝐴)) = (𝐹𝐴))
2423feq1d 6585 . . . 4 (𝐹 ∈ ≤𝑂(1) → ((𝐹 ↾ (dom 𝐹𝐴)):(dom 𝐹𝐴)⟶ℝ ↔ (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ))
2517, 24mpbid 231 . . 3 (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴):(dom 𝐹𝐴)⟶ℝ)
26 lo1dm 15228 . . . 4 (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)
274, 26sstrid 3932 . . 3 (𝐹 ∈ ≤𝑂(1) → (dom 𝐹𝐴) ⊆ ℝ)
28 ello12 15225 . . 3 (((𝐹𝐴):(dom 𝐹𝐴)⟶ℝ ∧ (dom 𝐹𝐴) ⊆ ℝ) → ((𝐹𝐴) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚)))
2925, 27, 28syl2anc 584 . 2 (𝐹 ∈ ≤𝑂(1) → ((𝐹𝐴) ∈ ≤𝑂(1) ↔ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹𝐴)(𝑥𝑦 → ((𝐹𝐴)‘𝑦) ≤ 𝑚)))
3015, 29mpbird 256 1 (𝐹 ∈ ≤𝑂(1) → (𝐹𝐴) ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cin 3886  wss 3887   class class class wbr 5074  dom cdm 5589  cres 5591   Fn wfn 6428  wf 6429  cfv 6433  cr 10870  cle 11010  ≤𝑂(1)clo1 15196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ico 13085  df-lo1 15200
This theorem is referenced by:  o1res  15269  lo1res2  15271  lo1resb  15273
  Copyright terms: Public domain W3C validator