MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ello12r Structured version   Visualization version   GIF version

Theorem ello12r 15459
Description: Sufficient condition for elementhood in the set of eventually upper bounded functions. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
ello12r (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (𝐹𝑥) ≤ 𝑀)) → 𝐹 ∈ ≤𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹   𝑥,𝑀

Proof of Theorem ello12r
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 5105 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
21imbi1d 341 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥 → (𝐹𝑥) ≤ 𝑚) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ 𝑚)))
32ralbidv 3156 . . . . 5 (𝑦 = 𝐶 → (∀𝑥𝐴 (𝑦𝑥 → (𝐹𝑥) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (𝐹𝑥) ≤ 𝑚)))
4 breq2 5106 . . . . . . 7 (𝑚 = 𝑀 → ((𝐹𝑥) ≤ 𝑚 ↔ (𝐹𝑥) ≤ 𝑀))
54imbi2d 340 . . . . . 6 (𝑚 = 𝑀 → ((𝐶𝑥 → (𝐹𝑥) ≤ 𝑚) ↔ (𝐶𝑥 → (𝐹𝑥) ≤ 𝑀)))
65ralbidv 3156 . . . . 5 (𝑚 = 𝑀 → (∀𝑥𝐴 (𝐶𝑥 → (𝐹𝑥) ≤ 𝑚) ↔ ∀𝑥𝐴 (𝐶𝑥 → (𝐹𝑥) ≤ 𝑀)))
73, 6rspc2ev 3598 . . . 4 ((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ∀𝑥𝐴 (𝐶𝑥 → (𝐹𝑥) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (𝐹𝑥) ≤ 𝑚))
873expa 1118 . . 3 (((𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (𝐹𝑥) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (𝐹𝑥) ≤ 𝑚))
983adant1 1130 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (𝐹𝑥) ≤ 𝑀)) → ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (𝐹𝑥) ≤ 𝑚))
10 ello12 15458 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (𝐹𝑥) ≤ 𝑚)))
11103ad2ant1 1133 . 2 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (𝐹𝑥) ≤ 𝑀)) → (𝐹 ∈ ≤𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑥𝐴 (𝑦𝑥 → (𝐹𝑥) ≤ 𝑚)))
129, 11mpbird 257 1 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ⊆ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝑀 ∈ ℝ) ∧ ∀𝑥𝐴 (𝐶𝑥 → (𝐹𝑥) ≤ 𝑀)) → 𝐹 ∈ ≤𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3911   class class class wbr 5102  wf 6495  cfv 6499  cr 11043  cle 11185  ≤𝑂(1)clo1 15429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-ico 13288  df-lo1 15433
This theorem is referenced by:  lo1resb  15506
  Copyright terms: Public domain W3C validator