MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mptrcl Structured version   Visualization version   GIF version

Theorem lo1mptrcl 15533
Description: Reverse closure for an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
lo1mptrcl.3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
Assertion
Ref Expression
lo1mptrcl ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem lo1mptrcl
StepHypRef Expression
1 lo1mptrcl.3 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1f 15429 . . . 4 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
31, 2syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
4 o1add2.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6196 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6642 . . 3 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ ↔ (𝑥𝐴𝐵):𝐴⟶ℝ))
93, 8mpbid 232 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
109fvmptelcdm 7054 1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  cmpt 5176  dom cdm 5621  wf 6484  cr 11014  ≤𝑂(1)clo1 15398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-pm 8761  df-lo1 15402
This theorem is referenced by:  lo1add  15538  lo1mul  15539  lo1mul2  15540  lo1sub  15542  lo1le  15563
  Copyright terms: Public domain W3C validator