MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mptrcl Structured version   Visualization version   GIF version

Theorem lo1mptrcl 15562
Description: Reverse closure for an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ 𝑉)
lo1mptrcl.3 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ ≀𝑂(1))
Assertion
Ref Expression
lo1mptrcl ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ ℝ)
Distinct variable groups:   π‘₯,𝐴   πœ‘,π‘₯
Allowed substitution hints:   𝐡(π‘₯)   𝑉(π‘₯)

Proof of Theorem lo1mptrcl
StepHypRef Expression
1 lo1mptrcl.3 . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ ≀𝑂(1))
2 lo1f 15458 . . . 4 ((π‘₯ ∈ 𝐴 ↦ 𝐡) ∈ ≀𝑂(1) β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡):dom (π‘₯ ∈ 𝐴 ↦ 𝐡)βŸΆβ„)
31, 2syl 17 . . 3 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡):dom (π‘₯ ∈ 𝐴 ↦ 𝐡)βŸΆβ„)
4 o1add2.1 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ 𝑉)
54ralrimiva 3146 . . . . 5 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ 𝑉)
6 dmmptg 6238 . . . . 5 (βˆ€π‘₯ ∈ 𝐴 𝐡 ∈ 𝑉 β†’ dom (π‘₯ ∈ 𝐴 ↦ 𝐡) = 𝐴)
75, 6syl 17 . . . 4 (πœ‘ β†’ dom (π‘₯ ∈ 𝐴 ↦ 𝐡) = 𝐴)
87feq2d 6700 . . 3 (πœ‘ β†’ ((π‘₯ ∈ 𝐴 ↦ 𝐡):dom (π‘₯ ∈ 𝐴 ↦ 𝐡)βŸΆβ„ ↔ (π‘₯ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„))
93, 8mpbid 231 . 2 (πœ‘ β†’ (π‘₯ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„)
109fvmptelcdm 7109 1 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   ↦ cmpt 5230  dom cdm 5675  βŸΆwf 6536  β„cr 11105  β‰€π‘‚(1)clo1 15427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-pm 8819  df-lo1 15431
This theorem is referenced by:  lo1add  15567  lo1mul  15568  lo1mul2  15569  lo1sub  15571  lo1le  15594
  Copyright terms: Public domain W3C validator