MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mptrcl Structured version   Visualization version   GIF version

Theorem lo1mptrcl 15655
Description: Reverse closure for an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
lo1mptrcl.3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
Assertion
Ref Expression
lo1mptrcl ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem lo1mptrcl
StepHypRef Expression
1 lo1mptrcl.3 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1f 15551 . . . 4 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
31, 2syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
4 o1add2.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6264 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6723 . . 3 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ ↔ (𝑥𝐴𝐵):𝐴⟶ℝ))
93, 8mpbid 232 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
109fvmptelcdm 7133 1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  cmpt 5231  dom cdm 5689  wf 6559  cr 11152  ≤𝑂(1)clo1 15520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-pm 8868  df-lo1 15524
This theorem is referenced by:  lo1add  15660  lo1mul  15661  lo1mul2  15662  lo1sub  15664  lo1le  15685
  Copyright terms: Public domain W3C validator