MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1mptrcl Structured version   Visualization version   GIF version

Theorem lo1mptrcl 15011
Description: Reverse closure for an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016.)
Hypotheses
Ref Expression
o1add2.1 ((𝜑𝑥𝐴) → 𝐵𝑉)
lo1mptrcl.3 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
Assertion
Ref Expression
lo1mptrcl ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem lo1mptrcl
StepHypRef Expression
1 lo1mptrcl.3 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
2 lo1f 14908 . . . 4 ((𝑥𝐴𝐵) ∈ ≤𝑂(1) → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
31, 2syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
4 o1add2.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑉)
54ralrimiva 3111 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
6 dmmptg 6064 . . . . 5 (∀𝑥𝐴 𝐵𝑉 → dom (𝑥𝐴𝐵) = 𝐴)
75, 6syl 17 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
87feq2d 6477 . . 3 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ ↔ (𝑥𝐴𝐵):𝐴⟶ℝ))
93, 8mpbid 235 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
109fvmptelrn 6861 1 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3068  cmpt 5105  dom cdm 5517  wf 6324  cr 10559  ≤𝑂(1)clo1 14877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5162  ax-nul 5169  ax-pow 5227  ax-pr 5291  ax-un 7452  ax-cnex 10616  ax-resscn 10617
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2899  df-ne 2950  df-ral 3073  df-rex 3074  df-rab 3077  df-v 3409  df-sbc 3694  df-dif 3857  df-un 3859  df-in 3861  df-ss 3871  df-nul 4222  df-if 4414  df-pw 4489  df-sn 4516  df-pr 4518  df-op 4522  df-uni 4792  df-br 5026  df-opab 5088  df-mpt 5106  df-id 5423  df-xp 5523  df-rel 5524  df-cnv 5525  df-co 5526  df-dm 5527  df-rn 5528  df-res 5529  df-ima 5530  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-ov 7146  df-oprab 7147  df-mpo 7148  df-pm 8412  df-lo1 14881
This theorem is referenced by:  lo1add  15016  lo1mul  15017  lo1mul2  15018  lo1sub  15020  lo1le  15041
  Copyright terms: Public domain W3C validator