MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfinnei Structured version   Visualization version   GIF version

Theorem locfinnei 23455
Description: A point covered by a locally finite cover has a neighborhood which intersects only finitely many elements of the cover. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypothesis
Ref Expression
locfinnei.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
locfinnei ((𝐴 ∈ (LocFinβ€˜π½) ∧ 𝑃 ∈ 𝑋) β†’ βˆƒπ‘› ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))
Distinct variable groups:   𝑛,𝑠,𝐴   𝑛,𝐽   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑠)   𝐽(𝑠)   𝑋(𝑛,𝑠)

Proof of Theorem locfinnei
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 locfinnei.1 . . . 4 𝑋 = βˆͺ 𝐽
2 eqid 2728 . . . 4 βˆͺ 𝐴 = βˆͺ 𝐴
31, 2islocfin 23449 . . 3 (𝐴 ∈ (LocFinβ€˜π½) ↔ (𝐽 ∈ Top ∧ 𝑋 = βˆͺ 𝐴 ∧ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
43simp3bi 1144 . 2 (𝐴 ∈ (LocFinβ€˜π½) β†’ βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))
5 eleq1 2817 . . . . 5 (π‘₯ = 𝑃 β†’ (π‘₯ ∈ 𝑛 ↔ 𝑃 ∈ 𝑛))
65anbi1d 629 . . . 4 (π‘₯ = 𝑃 β†’ ((π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) ↔ (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
76rexbidv 3176 . . 3 (π‘₯ = 𝑃 β†’ (βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) ↔ βˆƒπ‘› ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
87rspccva 3610 . 2 ((βˆ€π‘₯ ∈ 𝑋 βˆƒπ‘› ∈ 𝐽 (π‘₯ ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) ∧ 𝑃 ∈ 𝑋) β†’ βˆƒπ‘› ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))
94, 8sylan 578 1 ((𝐴 ∈ (LocFinβ€˜π½) ∧ 𝑃 ∈ 𝑋) β†’ βˆƒπ‘› ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   β‰  wne 2937  βˆ€wral 3058  βˆƒwrex 3067  {crab 3430   ∩ cin 3948  βˆ…c0 4326  βˆͺ cuni 4912  β€˜cfv 6553  Fincfn 8972  Topctop 22823  LocFinclocfin 23436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fv 6561  df-top 22824  df-locfin 23439
This theorem is referenced by:  lfinpfin  23456  lfinun  23457  locfincmp  23458  locfincf  23463
  Copyright terms: Public domain W3C validator