MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfinnei Structured version   Visualization version   GIF version

Theorem locfinnei 22719
Description: A point covered by a locally finite cover has a neighborhood which intersects only finitely many elements of the cover. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypothesis
Ref Expression
locfinnei.1 𝑋 = 𝐽
Assertion
Ref Expression
locfinnei ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑃𝑋) → ∃𝑛𝐽 (𝑃𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
Distinct variable groups:   𝑛,𝑠,𝐴   𝑛,𝐽   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑠)   𝐽(𝑠)   𝑋(𝑛,𝑠)

Proof of Theorem locfinnei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 locfinnei.1 . . . 4 𝑋 = 𝐽
2 eqid 2736 . . . 4 𝐴 = 𝐴
31, 2islocfin 22713 . . 3 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐴 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
43simp3bi 1147 . 2 (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
5 eleq1 2824 . . . . 5 (𝑥 = 𝑃 → (𝑥𝑛𝑃𝑛))
65anbi1d 631 . . . 4 (𝑥 = 𝑃 → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ (𝑃𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
76rexbidv 3172 . . 3 (𝑥 = 𝑃 → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ ∃𝑛𝐽 (𝑃𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
87rspccva 3565 . 2 ((∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ∧ 𝑃𝑋) → ∃𝑛𝐽 (𝑃𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
94, 8sylan 581 1 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑃𝑋) → ∃𝑛𝐽 (𝑃𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  wne 2941  wral 3062  wrex 3071  {crab 3284  cin 3891  c0 4262   cuni 4844  cfv 6458  Fincfn 8764  Topctop 22087  LocFinclocfin 22700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fv 6466  df-top 22088  df-locfin 22703
This theorem is referenced by:  lfinpfin  22720  lfinun  22721  locfincmp  22722  locfincf  22727
  Copyright terms: Public domain W3C validator