Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > locfinnei | Structured version Visualization version GIF version |
Description: A point covered by a locally finite cover has a neighborhood which intersects only finitely many elements of the cover. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
locfinnei.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
locfinnei | ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | locfinnei.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | eqid 2739 | . . . 4 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
3 | 1, 2 | islocfin 22649 | . . 3 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐴 ∧ ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
4 | 3 | simp3bi 1145 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
5 | eleq1 2827 | . . . . 5 ⊢ (𝑥 = 𝑃 → (𝑥 ∈ 𝑛 ↔ 𝑃 ∈ 𝑛)) | |
6 | 5 | anbi1d 629 | . . . 4 ⊢ (𝑥 = 𝑃 → ((𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔ (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
7 | 6 | rexbidv 3227 | . . 3 ⊢ (𝑥 = 𝑃 → (∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ↔ ∃𝑛 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
8 | 7 | rspccva 3559 | . 2 ⊢ ((∀𝑥 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑥 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin) ∧ 𝑃 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
9 | 4, 8 | sylan 579 | 1 ⊢ ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑃 ∈ 𝑋) → ∃𝑛 ∈ 𝐽 (𝑃 ∈ 𝑛 ∧ {𝑠 ∈ 𝐴 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∀wral 3065 ∃wrex 3066 {crab 3069 ∩ cin 3890 ∅c0 4261 ∪ cuni 4844 ‘cfv 6430 Fincfn 8707 Topctop 22023 LocFinclocfin 22636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 df-top 22024 df-locfin 22639 |
This theorem is referenced by: lfinpfin 22656 lfinun 22657 locfincmp 22658 locfincf 22663 |
Copyright terms: Public domain | W3C validator |