MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfinnei Structured version   Visualization version   GIF version

Theorem locfinnei 21547
Description: A point covered by a locally finite cover has a neighborhood which intersects only finitely many elements of the cover. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypothesis
Ref Expression
locfinnei.1 𝑋 = 𝐽
Assertion
Ref Expression
locfinnei ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑃𝑋) → ∃𝑛𝐽 (𝑃𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
Distinct variable groups:   𝑛,𝑠,𝐴   𝑛,𝐽   𝑃,𝑛
Allowed substitution hints:   𝑃(𝑠)   𝐽(𝑠)   𝑋(𝑛,𝑠)

Proof of Theorem locfinnei
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 locfinnei.1 . . . 4 𝑋 = 𝐽
2 eqid 2771 . . . 4 𝐴 = 𝐴
31, 2islocfin 21541 . . 3 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐴 ∧ ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
43simp3bi 1141 . 2 (𝐴 ∈ (LocFin‘𝐽) → ∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
5 eleq1 2838 . . . . 5 (𝑥 = 𝑃 → (𝑥𝑛𝑃𝑛))
65anbi1d 615 . . . 4 (𝑥 = 𝑃 → ((𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ (𝑃𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
76rexbidv 3200 . . 3 (𝑥 = 𝑃 → (∃𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ↔ ∃𝑛𝐽 (𝑃𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
87rspccva 3459 . 2 ((∀𝑥𝑋𝑛𝐽 (𝑥𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) ∧ 𝑃𝑋) → ∃𝑛𝐽 (𝑃𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
94, 8sylan 569 1 ((𝐴 ∈ (LocFin‘𝐽) ∧ 𝑃𝑋) → ∃𝑛𝐽 (𝑃𝑛 ∧ {𝑠𝐴 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  cin 3722  c0 4063   cuni 4574  cfv 6031  Fincfn 8109  Topctop 20918  LocFinclocfin 21528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fv 6039  df-top 20919  df-locfin 21531
This theorem is referenced by:  lfinpfin  21548  lfinun  21549  locfincmp  21550  locfincf  21555
  Copyright terms: Public domain W3C validator