MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfincf Structured version   Visualization version   GIF version

Theorem locfincf 23439
Description: A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfincf.1 𝑋 = 𝐽
Assertion
Ref Expression
locfincf ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (LocFin‘𝐽) ⊆ (LocFin‘𝐾))

Proof of Theorem locfincf
Dummy variables 𝑛 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22821 . . . . 5 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
21ad2antrr 726 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝐾 ∈ Top)
3 toponuni 22822 . . . . . 6 (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = 𝐾)
43ad2antrr 726 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝑋 = 𝐾)
5 locfincf.1 . . . . . . 7 𝑋 = 𝐽
6 eqid 2730 . . . . . . 7 𝑥 = 𝑥
75, 6locfinbas 23430 . . . . . 6 (𝑥 ∈ (LocFin‘𝐽) → 𝑋 = 𝑥)
87adantl 481 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝑋 = 𝑥)
94, 8eqtr3d 2767 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝐾 = 𝑥)
104eleq2d 2815 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → (𝑦𝑋𝑦 𝐾))
115locfinnei 23431 . . . . . . . 8 ((𝑥 ∈ (LocFin‘𝐽) ∧ 𝑦𝑋) → ∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
1211ex 412 . . . . . . 7 (𝑥 ∈ (LocFin‘𝐽) → (𝑦𝑋 → ∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
13 ssrexv 4002 . . . . . . . 8 (𝐽𝐾 → (∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1413adantl 481 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1512, 14sylan9r 508 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → (𝑦𝑋 → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1610, 15sylbird 260 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → (𝑦 𝐾 → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1716ralrimiv 3121 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → ∀𝑦 𝐾𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
18 eqid 2730 . . . . 5 𝐾 = 𝐾
1918, 6islocfin 23425 . . . 4 (𝑥 ∈ (LocFin‘𝐾) ↔ (𝐾 ∈ Top ∧ 𝐾 = 𝑥 ∧ ∀𝑦 𝐾𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
202, 9, 17, 19syl3anbrc 1344 . . 3 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝑥 ∈ (LocFin‘𝐾))
2120ex 412 . 2 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (LocFin‘𝐽) → 𝑥 ∈ (LocFin‘𝐾)))
2221ssrdv 3938 1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (LocFin‘𝐽) ⊆ (LocFin‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926  wral 3045  wrex 3054  {crab 3393  cin 3899  wss 3900  c0 4281   cuni 4857  cfv 6477  Fincfn 8864  Topctop 22801  TopOnctopon 22818  LocFinclocfin 23412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fv 6485  df-top 22802  df-topon 22819  df-locfin 23415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator