MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfincf Structured version   Visualization version   GIF version

Theorem locfincf 23540
Description: A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfincf.1 𝑋 = 𝐽
Assertion
Ref Expression
locfincf ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (LocFin‘𝐽) ⊆ (LocFin‘𝐾))

Proof of Theorem locfincf
Dummy variables 𝑛 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22920 . . . . 5 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
21ad2antrr 726 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝐾 ∈ Top)
3 toponuni 22921 . . . . . 6 (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = 𝐾)
43ad2antrr 726 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝑋 = 𝐾)
5 locfincf.1 . . . . . . 7 𝑋 = 𝐽
6 eqid 2736 . . . . . . 7 𝑥 = 𝑥
75, 6locfinbas 23531 . . . . . 6 (𝑥 ∈ (LocFin‘𝐽) → 𝑋 = 𝑥)
87adantl 481 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝑋 = 𝑥)
94, 8eqtr3d 2778 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝐾 = 𝑥)
104eleq2d 2826 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → (𝑦𝑋𝑦 𝐾))
115locfinnei 23532 . . . . . . . 8 ((𝑥 ∈ (LocFin‘𝐽) ∧ 𝑦𝑋) → ∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
1211ex 412 . . . . . . 7 (𝑥 ∈ (LocFin‘𝐽) → (𝑦𝑋 → ∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
13 ssrexv 4052 . . . . . . . 8 (𝐽𝐾 → (∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1413adantl 481 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1512, 14sylan9r 508 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → (𝑦𝑋 → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1610, 15sylbird 260 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → (𝑦 𝐾 → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1716ralrimiv 3144 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → ∀𝑦 𝐾𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
18 eqid 2736 . . . . 5 𝐾 = 𝐾
1918, 6islocfin 23526 . . . 4 (𝑥 ∈ (LocFin‘𝐾) ↔ (𝐾 ∈ Top ∧ 𝐾 = 𝑥 ∧ ∀𝑦 𝐾𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
202, 9, 17, 19syl3anbrc 1343 . . 3 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝑥 ∈ (LocFin‘𝐾))
2120ex 412 . 2 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (LocFin‘𝐽) → 𝑥 ∈ (LocFin‘𝐾)))
2221ssrdv 3988 1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (LocFin‘𝐽) ⊆ (LocFin‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  wral 3060  wrex 3069  {crab 3435  cin 3949  wss 3950  c0 4332   cuni 4906  cfv 6560  Fincfn 8986  Topctop 22900  TopOnctopon 22917  LocFinclocfin 23513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fv 6568  df-top 22901  df-topon 22918  df-locfin 23516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator