MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfincf Structured version   Visualization version   GIF version

Theorem locfincf 22133
Description: A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfincf.1 𝑋 = 𝐽
Assertion
Ref Expression
locfincf ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (LocFin‘𝐽) ⊆ (LocFin‘𝐾))

Proof of Theorem locfincf
Dummy variables 𝑛 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 21515 . . . . 5 (𝐾 ∈ (TopOn‘𝑋) → 𝐾 ∈ Top)
21ad2antrr 724 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝐾 ∈ Top)
3 toponuni 21516 . . . . . 6 (𝐾 ∈ (TopOn‘𝑋) → 𝑋 = 𝐾)
43ad2antrr 724 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝑋 = 𝐾)
5 locfincf.1 . . . . . . 7 𝑋 = 𝐽
6 eqid 2821 . . . . . . 7 𝑥 = 𝑥
75, 6locfinbas 22124 . . . . . 6 (𝑥 ∈ (LocFin‘𝐽) → 𝑋 = 𝑥)
87adantl 484 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝑋 = 𝑥)
94, 8eqtr3d 2858 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝐾 = 𝑥)
104eleq2d 2898 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → (𝑦𝑋𝑦 𝐾))
115locfinnei 22125 . . . . . . . 8 ((𝑥 ∈ (LocFin‘𝐽) ∧ 𝑦𝑋) → ∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
1211ex 415 . . . . . . 7 (𝑥 ∈ (LocFin‘𝐽) → (𝑦𝑋 → ∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
13 ssrexv 4033 . . . . . . . 8 (𝐽𝐾 → (∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1413adantl 484 . . . . . . 7 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (∃𝑛𝐽 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin) → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1512, 14sylan9r 511 . . . . . 6 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → (𝑦𝑋 → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1610, 15sylbird 262 . . . . 5 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → (𝑦 𝐾 → ∃𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
1716ralrimiv 3181 . . . 4 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → ∀𝑦 𝐾𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))
18 eqid 2821 . . . . 5 𝐾 = 𝐾
1918, 6islocfin 22119 . . . 4 (𝑥 ∈ (LocFin‘𝐾) ↔ (𝐾 ∈ Top ∧ 𝐾 = 𝑥 ∧ ∀𝑦 𝐾𝑛𝐾 (𝑦𝑛 ∧ {𝑠𝑥 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin)))
202, 9, 17, 19syl3anbrc 1339 . . 3 (((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (LocFin‘𝐽)) → 𝑥 ∈ (LocFin‘𝐾))
2120ex 415 . 2 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (LocFin‘𝐽) → 𝑥 ∈ (LocFin‘𝐾)))
2221ssrdv 3972 1 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽𝐾) → (LocFin‘𝐽) ⊆ (LocFin‘𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  {crab 3142  cin 3934  wss 3935  c0 4290   cuni 4831  cfv 6349  Fincfn 8503  Topctop 21495  TopOnctopon 21512  LocFinclocfin 22106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fv 6357  df-top 21496  df-topon 21513  df-locfin 22109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator