MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfincf Structured version   Visualization version   GIF version

Theorem locfincf 23035
Description: A locally finite cover in a coarser topology is locally finite in a finer topology. (Contributed by Jeff Hankins, 22-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypothesis
Ref Expression
locfincf.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
locfincf ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (LocFinβ€˜π½) βŠ† (LocFinβ€˜πΎ))

Proof of Theorem locfincf
Dummy variables 𝑛 𝑠 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 22415 . . . . 5 (𝐾 ∈ (TopOnβ€˜π‘‹) β†’ 𝐾 ∈ Top)
21ad2antrr 725 . . . 4 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ π‘₯ ∈ (LocFinβ€˜π½)) β†’ 𝐾 ∈ Top)
3 toponuni 22416 . . . . . 6 (𝐾 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐾)
43ad2antrr 725 . . . . 5 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ π‘₯ ∈ (LocFinβ€˜π½)) β†’ 𝑋 = βˆͺ 𝐾)
5 locfincf.1 . . . . . . 7 𝑋 = βˆͺ 𝐽
6 eqid 2733 . . . . . . 7 βˆͺ π‘₯ = βˆͺ π‘₯
75, 6locfinbas 23026 . . . . . 6 (π‘₯ ∈ (LocFinβ€˜π½) β†’ 𝑋 = βˆͺ π‘₯)
87adantl 483 . . . . 5 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ π‘₯ ∈ (LocFinβ€˜π½)) β†’ 𝑋 = βˆͺ π‘₯)
94, 8eqtr3d 2775 . . . 4 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ π‘₯ ∈ (LocFinβ€˜π½)) β†’ βˆͺ 𝐾 = βˆͺ π‘₯)
104eleq2d 2820 . . . . . 6 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ π‘₯ ∈ (LocFinβ€˜π½)) β†’ (𝑦 ∈ 𝑋 ↔ 𝑦 ∈ βˆͺ 𝐾))
115locfinnei 23027 . . . . . . . 8 ((π‘₯ ∈ (LocFinβ€˜π½) ∧ 𝑦 ∈ 𝑋) β†’ βˆƒπ‘› ∈ 𝐽 (𝑦 ∈ 𝑛 ∧ {𝑠 ∈ π‘₯ ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))
1211ex 414 . . . . . . 7 (π‘₯ ∈ (LocFinβ€˜π½) β†’ (𝑦 ∈ 𝑋 β†’ βˆƒπ‘› ∈ 𝐽 (𝑦 ∈ 𝑛 ∧ {𝑠 ∈ π‘₯ ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
13 ssrexv 4052 . . . . . . . 8 (𝐽 βŠ† 𝐾 β†’ (βˆƒπ‘› ∈ 𝐽 (𝑦 ∈ 𝑛 ∧ {𝑠 ∈ π‘₯ ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) β†’ βˆƒπ‘› ∈ 𝐾 (𝑦 ∈ 𝑛 ∧ {𝑠 ∈ π‘₯ ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
1413adantl 483 . . . . . . 7 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (βˆƒπ‘› ∈ 𝐽 (𝑦 ∈ 𝑛 ∧ {𝑠 ∈ π‘₯ ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin) β†’ βˆƒπ‘› ∈ 𝐾 (𝑦 ∈ 𝑛 ∧ {𝑠 ∈ π‘₯ ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
1512, 14sylan9r 510 . . . . . 6 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ π‘₯ ∈ (LocFinβ€˜π½)) β†’ (𝑦 ∈ 𝑋 β†’ βˆƒπ‘› ∈ 𝐾 (𝑦 ∈ 𝑛 ∧ {𝑠 ∈ π‘₯ ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
1610, 15sylbird 260 . . . . 5 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ π‘₯ ∈ (LocFinβ€˜π½)) β†’ (𝑦 ∈ βˆͺ 𝐾 β†’ βˆƒπ‘› ∈ 𝐾 (𝑦 ∈ 𝑛 ∧ {𝑠 ∈ π‘₯ ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
1716ralrimiv 3146 . . . 4 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ π‘₯ ∈ (LocFinβ€˜π½)) β†’ βˆ€π‘¦ ∈ βˆͺ πΎβˆƒπ‘› ∈ 𝐾 (𝑦 ∈ 𝑛 ∧ {𝑠 ∈ π‘₯ ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin))
18 eqid 2733 . . . . 5 βˆͺ 𝐾 = βˆͺ 𝐾
1918, 6islocfin 23021 . . . 4 (π‘₯ ∈ (LocFinβ€˜πΎ) ↔ (𝐾 ∈ Top ∧ βˆͺ 𝐾 = βˆͺ π‘₯ ∧ βˆ€π‘¦ ∈ βˆͺ πΎβˆƒπ‘› ∈ 𝐾 (𝑦 ∈ 𝑛 ∧ {𝑠 ∈ π‘₯ ∣ (𝑠 ∩ 𝑛) β‰  βˆ…} ∈ Fin)))
202, 9, 17, 19syl3anbrc 1344 . . 3 (((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) ∧ π‘₯ ∈ (LocFinβ€˜π½)) β†’ π‘₯ ∈ (LocFinβ€˜πΎ))
2120ex 414 . 2 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (π‘₯ ∈ (LocFinβ€˜π½) β†’ π‘₯ ∈ (LocFinβ€˜πΎ)))
2221ssrdv 3989 1 ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (LocFinβ€˜π½) βŠ† (LocFinβ€˜πΎ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4323  βˆͺ cuni 4909  β€˜cfv 6544  Fincfn 8939  Topctop 22395  TopOnctopon 22412  LocFinclocfin 23008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-top 22396  df-topon 22413  df-locfin 23011
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator