| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > locfinbas | Structured version Visualization version GIF version | ||
| Description: A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| Ref | Expression |
|---|---|
| locfinbas.1 | ⊢ 𝑋 = ∪ 𝐽 |
| locfinbas.2 | ⊢ 𝑌 = ∪ 𝐴 |
| Ref | Expression |
|---|---|
| locfinbas | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | locfinbas.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | locfinbas.2 | . . 3 ⊢ 𝑌 = ∪ 𝐴 | |
| 3 | 1, 2 | islocfin 23455 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑠 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑠 ∈ 𝑛 ∧ {𝑥 ∈ 𝐴 ∣ (𝑥 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
| 4 | 3 | simp2bi 1146 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ∃wrex 3060 {crab 3415 ∩ cin 3925 ∅c0 4308 ∪ cuni 4883 ‘cfv 6531 Fincfn 8959 Topctop 22831 LocFinclocfin 23442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-top 22832 df-locfin 23445 |
| This theorem is referenced by: lfinpfin 23462 lfinun 23463 locfincmp 23464 locfindis 23468 locfincf 23469 |
| Copyright terms: Public domain | W3C validator |