MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfinbas Structured version   Visualization version   GIF version

Theorem locfinbas 23350
Description: A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
locfinbas.1 𝑋 = 𝐽
locfinbas.2 𝑌 = 𝐴
Assertion
Ref Expression
locfinbas (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌)

Proof of Theorem locfinbas
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfinbas.1 . . 3 𝑋 = 𝐽
2 locfinbas.2 . . 3 𝑌 = 𝐴
31, 2islocfin 23345 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑠𝑋𝑛𝐽 (𝑠𝑛 ∧ {𝑥𝐴 ∣ (𝑥𝑛) ≠ ∅} ∈ Fin)))
43simp2bi 1143 1 (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  wral 3053  wrex 3062  {crab 3424  cin 3940  c0 4315   cuni 4900  cfv 6534  Fincfn 8936  Topctop 22719  LocFinclocfin 23332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fv 6542  df-top 22720  df-locfin 23335
This theorem is referenced by:  lfinpfin  23352  lfinun  23353  locfincmp  23354  locfindis  23358  locfincf  23359
  Copyright terms: Public domain W3C validator