MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfinbas Structured version   Visualization version   GIF version

Theorem locfinbas 22673
Description: A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
locfinbas.1 𝑋 = 𝐽
locfinbas.2 𝑌 = 𝐴
Assertion
Ref Expression
locfinbas (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌)

Proof of Theorem locfinbas
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfinbas.1 . . 3 𝑋 = 𝐽
2 locfinbas.2 . . 3 𝑌 = 𝐴
31, 2islocfin 22668 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑠𝑋𝑛𝐽 (𝑠𝑛 ∧ {𝑥𝐴 ∣ (𝑥𝑛) ≠ ∅} ∈ Fin)))
43simp2bi 1145 1 (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  cin 3886  c0 4256   cuni 4839  cfv 6433  Fincfn 8733  Topctop 22042  LocFinclocfin 22655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fv 6441  df-top 22043  df-locfin 22658
This theorem is referenced by:  lfinpfin  22675  lfinun  22676  locfincmp  22677  locfindis  22681  locfincf  22682
  Copyright terms: Public domain W3C validator