MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfinbas Structured version   Visualization version   GIF version

Theorem locfinbas 23442
Description: A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
locfinbas.1 𝑋 = 𝐽
locfinbas.2 𝑌 = 𝐴
Assertion
Ref Expression
locfinbas (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌)

Proof of Theorem locfinbas
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfinbas.1 . . 3 𝑋 = 𝐽
2 locfinbas.2 . . 3 𝑌 = 𝐴
31, 2islocfin 23437 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑠𝑋𝑛𝐽 (𝑠𝑛 ∧ {𝑥𝐴 ∣ (𝑥𝑛) ≠ ∅} ∈ Fin)))
43simp2bi 1146 1 (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  cin 3910  c0 4292   cuni 4867  cfv 6499  Fincfn 8895  Topctop 22813  LocFinclocfin 23424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-top 22814  df-locfin 23427
This theorem is referenced by:  lfinpfin  23444  lfinun  23445  locfincmp  23446  locfindis  23450  locfincf  23451
  Copyright terms: Public domain W3C validator