Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > locfinbas | Structured version Visualization version GIF version |
Description: A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
locfinbas.1 | ⊢ 𝑋 = ∪ 𝐽 |
locfinbas.2 | ⊢ 𝑌 = ∪ 𝐴 |
Ref | Expression |
---|---|
locfinbas | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | locfinbas.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | locfinbas.2 | . . 3 ⊢ 𝑌 = ∪ 𝐴 | |
3 | 1, 2 | islocfin 22576 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑠 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑠 ∈ 𝑛 ∧ {𝑥 ∈ 𝐴 ∣ (𝑥 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
4 | 3 | simp2bi 1144 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ∩ cin 3882 ∅c0 4253 ∪ cuni 4836 ‘cfv 6418 Fincfn 8691 Topctop 21950 LocFinclocfin 22563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-top 21951 df-locfin 22566 |
This theorem is referenced by: lfinpfin 22583 lfinun 22584 locfincmp 22585 locfindis 22589 locfincf 22590 |
Copyright terms: Public domain | W3C validator |