![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > locfinbas | Structured version Visualization version GIF version |
Description: A locally finite cover must cover the base set of its corresponding topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
locfinbas.1 | ⊢ 𝑋 = ∪ 𝐽 |
locfinbas.2 | ⊢ 𝑌 = ∪ 𝐴 |
Ref | Expression |
---|---|
locfinbas | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | locfinbas.1 | . . 3 ⊢ 𝑋 = ∪ 𝐽 | |
2 | locfinbas.2 | . . 3 ⊢ 𝑌 = ∪ 𝐴 | |
3 | 1, 2 | islocfin 23345 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑌 ∧ ∀𝑠 ∈ 𝑋 ∃𝑛 ∈ 𝐽 (𝑠 ∈ 𝑛 ∧ {𝑥 ∈ 𝐴 ∣ (𝑥 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
4 | 3 | simp2bi 1143 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 {crab 3424 ∩ cin 3940 ∅c0 4315 ∪ cuni 4900 ‘cfv 6534 Fincfn 8936 Topctop 22719 LocFinclocfin 23332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fv 6542 df-top 22720 df-locfin 23335 |
This theorem is referenced by: lfinpfin 23352 lfinun 23353 locfincmp 23354 locfindis 23358 locfincf 23359 |
Copyright terms: Public domain | W3C validator |