Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpoldN Structured version   Visualization version   GIF version

Theorem islpoldN 41087
Description: Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolset.v 𝑉 = (Base‘𝑊)
lpolset.s 𝑆 = (LSubSp‘𝑊)
lpolset.z 0 = (0g𝑊)
lpolset.a 𝐴 = (LSAtoms‘𝑊)
lpolset.h 𝐻 = (LSHyp‘𝑊)
lpolset.p 𝑃 = (LPol‘𝑊)
islpold.w (𝜑𝑊𝑋)
islpold.1 (𝜑 :𝒫 𝑉𝑆)
islpold.2 (𝜑 → ( 𝑉) = { 0 })
islpold.3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑥𝑦)) → ( 𝑦) ⊆ ( 𝑥))
islpold.4 ((𝜑𝑥𝐴) → ( 𝑥) ∈ 𝐻)
islpold.5 ((𝜑𝑥𝐴) → ( ‘( 𝑥)) = 𝑥)
Assertion
Ref Expression
islpoldN (𝜑𝑃)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝑊   𝑥, ,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem islpoldN
StepHypRef Expression
1 islpold.1 . 2 (𝜑 :𝒫 𝑉𝑆)
2 islpold.2 . . 3 (𝜑 → ( 𝑉) = { 0 })
3 islpold.3 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑥𝑦)) → ( 𝑦) ⊆ ( 𝑥))
43ex 411 . . . 4 (𝜑 → ((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)))
54alrimivv 1923 . . 3 (𝜑 → ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)))
6 islpold.4 . . . . 5 ((𝜑𝑥𝐴) → ( 𝑥) ∈ 𝐻)
7 islpold.5 . . . . 5 ((𝜑𝑥𝐴) → ( ‘( 𝑥)) = 𝑥)
86, 7jca 510 . . . 4 ((𝜑𝑥𝐴) → (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))
98ralrimiva 3135 . . 3 (𝜑 → ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))
102, 5, 93jca 1125 . 2 (𝜑 → (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))
11 islpold.w . . 3 (𝜑𝑊𝑋)
12 lpolset.v . . . 4 𝑉 = (Base‘𝑊)
13 lpolset.s . . . 4 𝑆 = (LSubSp‘𝑊)
14 lpolset.z . . . 4 0 = (0g𝑊)
15 lpolset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
16 lpolset.h . . . 4 𝐻 = (LSHyp‘𝑊)
17 lpolset.p . . . 4 𝑃 = (LPol‘𝑊)
1812, 13, 14, 15, 16, 17islpolN 41086 . . 3 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))))
1911, 18syl 17 . 2 (𝜑 → ( 𝑃 ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))))
201, 10, 19mpbir2and 711 1 (𝜑𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wal 1531   = wceq 1533  wcel 2098  wral 3050  wss 3944  𝒫 cpw 4604  {csn 4630  wf 6545  cfv 6549  Basecbs 17183  0gc0g 17424  LSubSpclss 20827  LSAtomsclsa 38576  LSHypclsh 38577  LPolclpoN 41083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-sbc 3774  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-map 8847  df-lpolN 41084
This theorem is referenced by:  dochpolN  41093
  Copyright terms: Public domain W3C validator