Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpoldN Structured version   Visualization version   GIF version

Theorem islpoldN 40658
Description: Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolset.v 𝑉 = (Baseβ€˜π‘Š)
lpolset.s 𝑆 = (LSubSpβ€˜π‘Š)
lpolset.z 0 = (0gβ€˜π‘Š)
lpolset.a 𝐴 = (LSAtomsβ€˜π‘Š)
lpolset.h 𝐻 = (LSHypβ€˜π‘Š)
lpolset.p 𝑃 = (LPolβ€˜π‘Š)
islpold.w (πœ‘ β†’ π‘Š ∈ 𝑋)
islpold.1 (πœ‘ β†’ βŠ₯ :𝒫 π‘‰βŸΆπ‘†)
islpold.2 (πœ‘ β†’ ( βŠ₯ β€˜π‘‰) = { 0 })
islpold.3 ((πœ‘ ∧ (π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦)) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯))
islpold.4 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ ( βŠ₯ β€˜π‘₯) ∈ 𝐻)
islpold.5 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)
Assertion
Ref Expression
islpoldN (πœ‘ β†’ βŠ₯ ∈ 𝑃)
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑦,π‘Š   π‘₯, βŠ₯ ,𝑦   πœ‘,π‘₯,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑃(π‘₯,𝑦)   𝑆(π‘₯,𝑦)   𝐻(π‘₯,𝑦)   𝑉(π‘₯,𝑦)   𝑋(π‘₯,𝑦)   0 (π‘₯,𝑦)

Proof of Theorem islpoldN
StepHypRef Expression
1 islpold.1 . 2 (πœ‘ β†’ βŠ₯ :𝒫 π‘‰βŸΆπ‘†)
2 islpold.2 . . 3 (πœ‘ β†’ ( βŠ₯ β€˜π‘‰) = { 0 })
3 islpold.3 . . . . 5 ((πœ‘ ∧ (π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦)) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯))
43ex 413 . . . 4 (πœ‘ β†’ ((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)))
54alrimivv 1931 . . 3 (πœ‘ β†’ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)))
6 islpold.4 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ ( βŠ₯ β€˜π‘₯) ∈ 𝐻)
7 islpold.5 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)
86, 7jca 512 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ (( βŠ₯ β€˜π‘₯) ∈ 𝐻 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯))
98ralrimiva 3146 . . 3 (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 (( βŠ₯ β€˜π‘₯) ∈ 𝐻 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯))
102, 5, 93jca 1128 . 2 (πœ‘ β†’ (( βŠ₯ β€˜π‘‰) = { 0 } ∧ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) ∧ βˆ€π‘₯ ∈ 𝐴 (( βŠ₯ β€˜π‘₯) ∈ 𝐻 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)))
11 islpold.w . . 3 (πœ‘ β†’ π‘Š ∈ 𝑋)
12 lpolset.v . . . 4 𝑉 = (Baseβ€˜π‘Š)
13 lpolset.s . . . 4 𝑆 = (LSubSpβ€˜π‘Š)
14 lpolset.z . . . 4 0 = (0gβ€˜π‘Š)
15 lpolset.a . . . 4 𝐴 = (LSAtomsβ€˜π‘Š)
16 lpolset.h . . . 4 𝐻 = (LSHypβ€˜π‘Š)
17 lpolset.p . . . 4 𝑃 = (LPolβ€˜π‘Š)
1812, 13, 14, 15, 16, 17islpolN 40657 . . 3 (π‘Š ∈ 𝑋 β†’ ( βŠ₯ ∈ 𝑃 ↔ ( βŠ₯ :𝒫 π‘‰βŸΆπ‘† ∧ (( βŠ₯ β€˜π‘‰) = { 0 } ∧ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) ∧ βˆ€π‘₯ ∈ 𝐴 (( βŠ₯ β€˜π‘₯) ∈ 𝐻 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)))))
1911, 18syl 17 . 2 (πœ‘ β†’ ( βŠ₯ ∈ 𝑃 ↔ ( βŠ₯ :𝒫 π‘‰βŸΆπ‘† ∧ (( βŠ₯ β€˜π‘‰) = { 0 } ∧ βˆ€π‘₯βˆ€π‘¦((π‘₯ βŠ† 𝑉 ∧ 𝑦 βŠ† 𝑉 ∧ π‘₯ βŠ† 𝑦) β†’ ( βŠ₯ β€˜π‘¦) βŠ† ( βŠ₯ β€˜π‘₯)) ∧ βˆ€π‘₯ ∈ 𝐴 (( βŠ₯ β€˜π‘₯) ∈ 𝐻 ∧ ( βŠ₯ β€˜( βŠ₯ β€˜π‘₯)) = π‘₯)))))
201, 10, 19mpbir2and 711 1 (πœ‘ β†’ βŠ₯ ∈ 𝑃)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   βŠ† wss 3948  π’« cpw 4602  {csn 4628  βŸΆwf 6539  β€˜cfv 6543  Basecbs 17148  0gc0g 17389  LSubSpclss 20686  LSAtomsclsa 38147  LSHypclsh 38148  LPolclpoN 40654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-lpolN 40655
This theorem is referenced by:  dochpolN  40664
  Copyright terms: Public domain W3C validator