![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpoldN | Structured version Visualization version GIF version |
Description: Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lpolset.v | ⊢ 𝑉 = (Base‘𝑊) |
lpolset.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lpolset.z | ⊢ 0 = (0g‘𝑊) |
lpolset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lpolset.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lpolset.p | ⊢ 𝑃 = (LPol‘𝑊) |
islpold.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
islpold.1 | ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) |
islpold.2 | ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) |
islpold.3 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) |
islpold.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) |
islpold.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) |
Ref | Expression |
---|---|
islpoldN | ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpold.1 | . 2 ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | |
2 | islpold.2 | . . 3 ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) | |
3 | islpold.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) | |
4 | 3 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
5 | 4 | alrimivv 1926 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
6 | islpold.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) | |
7 | islpold.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) | |
8 | 6, 7 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
9 | 8 | ralrimiva 3144 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
10 | 2, 5, 9 | 3jca 1127 | . 2 ⊢ (𝜑 → (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))) |
11 | islpold.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
12 | lpolset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
13 | lpolset.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
14 | lpolset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
15 | lpolset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
16 | lpolset.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
17 | lpolset.p | . . . 4 ⊢ 𝑃 = (LPol‘𝑊) | |
18 | 12, 13, 14, 15, 16, 17 | islpolN 41466 | . . 3 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
19 | 11, 18 | syl 17 | . 2 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
20 | 1, 10, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1535 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 𝒫 cpw 4605 {csn 4631 ⟶wf 6559 ‘cfv 6563 Basecbs 17245 0gc0g 17486 LSubSpclss 20947 LSAtomsclsa 38956 LSHypclsh 38957 LPolclpoN 41463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-lpolN 41464 |
This theorem is referenced by: dochpolN 41473 |
Copyright terms: Public domain | W3C validator |