Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpoldN | Structured version Visualization version GIF version |
Description: Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lpolset.v | ⊢ 𝑉 = (Base‘𝑊) |
lpolset.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lpolset.z | ⊢ 0 = (0g‘𝑊) |
lpolset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lpolset.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lpolset.p | ⊢ 𝑃 = (LPol‘𝑊) |
islpold.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
islpold.1 | ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) |
islpold.2 | ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) |
islpold.3 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) |
islpold.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) |
islpold.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) |
Ref | Expression |
---|---|
islpoldN | ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpold.1 | . 2 ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | |
2 | islpold.2 | . . 3 ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) | |
3 | islpold.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) | |
4 | 3 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
5 | 4 | alrimivv 1932 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
6 | islpold.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) | |
7 | islpold.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) | |
8 | 6, 7 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
9 | 8 | ralrimiva 3107 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
10 | 2, 5, 9 | 3jca 1126 | . 2 ⊢ (𝜑 → (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))) |
11 | islpold.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
12 | lpolset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
13 | lpolset.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
14 | lpolset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
15 | lpolset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
16 | lpolset.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
17 | lpolset.p | . . . 4 ⊢ 𝑃 = (LPol‘𝑊) | |
18 | 12, 13, 14, 15, 16, 17 | islpolN 39424 | . . 3 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
19 | 11, 18 | syl 17 | . 2 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
20 | 1, 10, 19 | mpbir2and 709 | 1 ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 ⟶wf 6414 ‘cfv 6418 Basecbs 16840 0gc0g 17067 LSubSpclss 20108 LSAtomsclsa 36915 LSHypclsh 36916 LPolclpoN 39421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-lpolN 39422 |
This theorem is referenced by: dochpolN 39431 |
Copyright terms: Public domain | W3C validator |