|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > islpoldN | Structured version Visualization version GIF version | ||
| Description: Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| lpolset.v | ⊢ 𝑉 = (Base‘𝑊) | 
| lpolset.s | ⊢ 𝑆 = (LSubSp‘𝑊) | 
| lpolset.z | ⊢ 0 = (0g‘𝑊) | 
| lpolset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) | 
| lpolset.h | ⊢ 𝐻 = (LSHyp‘𝑊) | 
| lpolset.p | ⊢ 𝑃 = (LPol‘𝑊) | 
| islpold.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) | 
| islpold.1 | ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | 
| islpold.2 | ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) | 
| islpold.3 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) | 
| islpold.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) | 
| islpold.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) | 
| Ref | Expression | 
|---|---|
| islpoldN | ⊢ (𝜑 → ⊥ ∈ 𝑃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | islpold.1 | . 2 ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | |
| 2 | islpold.2 | . . 3 ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) | |
| 3 | islpold.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) | |
| 4 | 3 | ex 412 | . . . 4 ⊢ (𝜑 → ((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) | 
| 5 | 4 | alrimivv 1928 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) | 
| 6 | islpold.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) | |
| 7 | islpold.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) | |
| 8 | 6, 7 | jca 511 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) | 
| 9 | 8 | ralrimiva 3146 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) | 
| 10 | 2, 5, 9 | 3jca 1129 | . 2 ⊢ (𝜑 → (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))) | 
| 11 | islpold.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
| 12 | lpolset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 13 | lpolset.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 14 | lpolset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
| 15 | lpolset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
| 16 | lpolset.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
| 17 | lpolset.p | . . . 4 ⊢ 𝑃 = (LPol‘𝑊) | |
| 18 | 12, 13, 14, 15, 16, 17 | islpolN 41485 | . . 3 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) | 
| 19 | 11, 18 | syl 17 | . 2 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) | 
| 20 | 1, 10, 19 | mpbir2and 713 | 1 ⊢ (𝜑 → ⊥ ∈ 𝑃) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∀wal 1538 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ⊆ wss 3951 𝒫 cpw 4600 {csn 4626 ⟶wf 6557 ‘cfv 6561 Basecbs 17247 0gc0g 17484 LSubSpclss 20929 LSAtomsclsa 38975 LSHypclsh 38976 LPolclpoN 41482 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8868 df-lpolN 41483 | 
| This theorem is referenced by: dochpolN 41492 | 
| Copyright terms: Public domain | W3C validator |