![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpoldN | Structured version Visualization version GIF version |
Description: Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lpolset.v | ⊢ 𝑉 = (Base‘𝑊) |
lpolset.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lpolset.z | ⊢ 0 = (0g‘𝑊) |
lpolset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lpolset.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lpolset.p | ⊢ 𝑃 = (LPol‘𝑊) |
islpold.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
islpold.1 | ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) |
islpold.2 | ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) |
islpold.3 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) |
islpold.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) |
islpold.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) |
Ref | Expression |
---|---|
islpoldN | ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpold.1 | . 2 ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | |
2 | islpold.2 | . . 3 ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) | |
3 | islpold.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) | |
4 | 3 | ex 411 | . . . 4 ⊢ (𝜑 → ((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
5 | 4 | alrimivv 1923 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
6 | islpold.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) | |
7 | islpold.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) | |
8 | 6, 7 | jca 510 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
9 | 8 | ralrimiva 3135 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
10 | 2, 5, 9 | 3jca 1125 | . 2 ⊢ (𝜑 → (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))) |
11 | islpold.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
12 | lpolset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
13 | lpolset.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
14 | lpolset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
15 | lpolset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
16 | lpolset.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
17 | lpolset.p | . . . 4 ⊢ 𝑃 = (LPol‘𝑊) | |
18 | 12, 13, 14, 15, 16, 17 | islpolN 41086 | . . 3 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
19 | 11, 18 | syl 17 | . 2 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
20 | 1, 10, 19 | mpbir2and 711 | 1 ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ⊆ wss 3944 𝒫 cpw 4604 {csn 4630 ⟶wf 6545 ‘cfv 6549 Basecbs 17183 0gc0g 17424 LSubSpclss 20827 LSAtomsclsa 38576 LSHypclsh 38577 LPolclpoN 41083 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-map 8847 df-lpolN 41084 |
This theorem is referenced by: dochpolN 41093 |
Copyright terms: Public domain | W3C validator |