Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpoldN | Structured version Visualization version GIF version |
Description: Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lpolset.v | ⊢ 𝑉 = (Base‘𝑊) |
lpolset.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lpolset.z | ⊢ 0 = (0g‘𝑊) |
lpolset.a | ⊢ 𝐴 = (LSAtoms‘𝑊) |
lpolset.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lpolset.p | ⊢ 𝑃 = (LPol‘𝑊) |
islpold.w | ⊢ (𝜑 → 𝑊 ∈ 𝑋) |
islpold.1 | ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) |
islpold.2 | ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) |
islpold.3 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) |
islpold.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) |
islpold.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) |
Ref | Expression |
---|---|
islpoldN | ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpold.1 | . 2 ⊢ (𝜑 → ⊥ :𝒫 𝑉⟶𝑆) | |
2 | islpold.2 | . . 3 ⊢ (𝜑 → ( ⊥ ‘𝑉) = { 0 }) | |
3 | islpold.3 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦)) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) | |
4 | 3 | ex 416 | . . . 4 ⊢ (𝜑 → ((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
5 | 4 | alrimivv 1929 | . . 3 ⊢ (𝜑 → ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥))) |
6 | islpold.4 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘𝑥) ∈ 𝐻) | |
7 | islpold.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥) | |
8 | 6, 7 | jca 515 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
9 | 8 | ralrimiva 3113 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥)) |
10 | 2, 5, 9 | 3jca 1125 | . 2 ⊢ (𝜑 → (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))) |
11 | islpold.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ 𝑋) | |
12 | lpolset.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
13 | lpolset.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
14 | lpolset.z | . . . 4 ⊢ 0 = (0g‘𝑊) | |
15 | lpolset.a | . . . 4 ⊢ 𝐴 = (LSAtoms‘𝑊) | |
16 | lpolset.h | . . . 4 ⊢ 𝐻 = (LSHyp‘𝑊) | |
17 | lpolset.p | . . . 4 ⊢ 𝑃 = (LPol‘𝑊) | |
18 | 12, 13, 14, 15, 16, 17 | islpolN 39085 | . . 3 ⊢ (𝑊 ∈ 𝑋 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
19 | 11, 18 | syl 17 | . 2 ⊢ (𝜑 → ( ⊥ ∈ 𝑃 ↔ ( ⊥ :𝒫 𝑉⟶𝑆 ∧ (( ⊥ ‘𝑉) = { 0 } ∧ ∀𝑥∀𝑦((𝑥 ⊆ 𝑉 ∧ 𝑦 ⊆ 𝑉 ∧ 𝑥 ⊆ 𝑦) → ( ⊥ ‘𝑦) ⊆ ( ⊥ ‘𝑥)) ∧ ∀𝑥 ∈ 𝐴 (( ⊥ ‘𝑥) ∈ 𝐻 ∧ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥))))) |
20 | 1, 10, 19 | mpbir2and 712 | 1 ⊢ (𝜑 → ⊥ ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 ∀wal 1536 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⊆ wss 3860 𝒫 cpw 4497 {csn 4525 ⟶wf 6335 ‘cfv 6339 Basecbs 16546 0gc0g 16776 LSubSpclss 19776 LSAtomsclsa 36576 LSHypclsh 36577 LPolclpoN 39082 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-map 8423 df-lpolN 39083 |
This theorem is referenced by: dochpolN 39092 |
Copyright terms: Public domain | W3C validator |