Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islpoldN Structured version   Visualization version   GIF version

Theorem islpoldN 41441
Description: Properties that determine a polarity. (Contributed by NM, 26-Nov-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
lpolset.v 𝑉 = (Base‘𝑊)
lpolset.s 𝑆 = (LSubSp‘𝑊)
lpolset.z 0 = (0g𝑊)
lpolset.a 𝐴 = (LSAtoms‘𝑊)
lpolset.h 𝐻 = (LSHyp‘𝑊)
lpolset.p 𝑃 = (LPol‘𝑊)
islpold.w (𝜑𝑊𝑋)
islpold.1 (𝜑 :𝒫 𝑉𝑆)
islpold.2 (𝜑 → ( 𝑉) = { 0 })
islpold.3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑥𝑦)) → ( 𝑦) ⊆ ( 𝑥))
islpold.4 ((𝜑𝑥𝐴) → ( 𝑥) ∈ 𝐻)
islpold.5 ((𝜑𝑥𝐴) → ( ‘( 𝑥)) = 𝑥)
Assertion
Ref Expression
islpoldN (𝜑𝑃)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝑊   𝑥, ,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑃(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑋(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem islpoldN
StepHypRef Expression
1 islpold.1 . 2 (𝜑 :𝒫 𝑉𝑆)
2 islpold.2 . . 3 (𝜑 → ( 𝑉) = { 0 })
3 islpold.3 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑥𝑦)) → ( 𝑦) ⊆ ( 𝑥))
43ex 412 . . . 4 (𝜑 → ((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)))
54alrimivv 1927 . . 3 (𝜑 → ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)))
6 islpold.4 . . . . 5 ((𝜑𝑥𝐴) → ( 𝑥) ∈ 𝐻)
7 islpold.5 . . . . 5 ((𝜑𝑥𝐴) → ( ‘( 𝑥)) = 𝑥)
86, 7jca 511 . . . 4 ((𝜑𝑥𝐴) → (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))
98ralrimiva 3152 . . 3 (𝜑 → ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥))
102, 5, 93jca 1128 . 2 (𝜑 → (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))
11 islpold.w . . 3 (𝜑𝑊𝑋)
12 lpolset.v . . . 4 𝑉 = (Base‘𝑊)
13 lpolset.s . . . 4 𝑆 = (LSubSp‘𝑊)
14 lpolset.z . . . 4 0 = (0g𝑊)
15 lpolset.a . . . 4 𝐴 = (LSAtoms‘𝑊)
16 lpolset.h . . . 4 𝐻 = (LSHyp‘𝑊)
17 lpolset.p . . . 4 𝑃 = (LPol‘𝑊)
1812, 13, 14, 15, 16, 17islpolN 41440 . . 3 (𝑊𝑋 → ( 𝑃 ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))))
1911, 18syl 17 . 2 (𝜑 → ( 𝑃 ↔ ( :𝒫 𝑉𝑆 ∧ (( 𝑉) = { 0 } ∧ ∀𝑥𝑦((𝑥𝑉𝑦𝑉𝑥𝑦) → ( 𝑦) ⊆ ( 𝑥)) ∧ ∀𝑥𝐴 (( 𝑥) ∈ 𝐻 ∧ ( ‘( 𝑥)) = 𝑥)))))
201, 10, 19mpbir2and 712 1 (𝜑𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wal 1535   = wceq 1537  wcel 2108  wral 3067  wss 3976  𝒫 cpw 4622  {csn 4648  wf 6569  cfv 6573  Basecbs 17258  0gc0g 17499  LSubSpclss 20952  LSAtomsclsa 38930  LSHypclsh 38931  LPolclpoN 41437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-lpolN 41438
This theorem is referenced by:  dochpolN  41447
  Copyright terms: Public domain W3C validator