Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapprop Structured version   Visualization version   GIF version

Theorem mapprop 48338
Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019.) (Proof shortened by AV, 2-Jun-2024.)
Hypothesis
Ref Expression
mapprop.f 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}
Assertion
Ref Expression
mapprop (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹 ∈ (𝑅m {𝑋, 𝑌}))

Proof of Theorem mapprop
StepHypRef Expression
1 mapprop.f . 2 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}
2 simp3r 1203 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝑅𝑊)
3 simpl 482 . . . 4 ((𝑋𝑉𝐴𝑅) → 𝑋𝑉)
4 simpl 482 . . . 4 ((𝑌𝑉𝐵𝑅) → 𝑌𝑉)
5 simpl 482 . . . 4 ((𝑋𝑌𝑅𝑊) → 𝑋𝑌)
63, 4, 53anim123i 1151 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝑋𝑉𝑌𝑉𝑋𝑌))
7 simpr 484 . . . . 5 ((𝑋𝑉𝐴𝑅) → 𝐴𝑅)
8 simpr 484 . . . . 5 ((𝑌𝑉𝐵𝑅) → 𝐵𝑅)
97, 8anim12i 613 . . . 4 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅)) → (𝐴𝑅𝐵𝑅))
1093adant3 1132 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝐴𝑅𝐵𝑅))
11 fprmappr 48337 . . 3 ((𝑅𝑊 ∧ (𝑋𝑉𝑌𝑉𝑋𝑌) ∧ (𝐴𝑅𝐵𝑅)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∈ (𝑅m {𝑋, 𝑌}))
122, 6, 10, 11syl3anc 1373 . 2 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∈ (𝑅m {𝑋, 𝑌}))
131, 12eqeltrid 2833 1 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹 ∈ (𝑅m {𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  {cpr 4594  cop 4598  (class class class)co 7390  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804
This theorem is referenced by:  lincvalpr  48411  ldepspr  48466
  Copyright terms: Public domain W3C validator