| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapprop | Structured version Visualization version GIF version | ||
| Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019.) (Proof shortened by AV, 2-Jun-2024.) |
| Ref | Expression |
|---|---|
| mapprop.f | ⊢ 𝐹 = {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉} |
| Ref | Expression |
|---|---|
| mapprop | ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → 𝐹 ∈ (𝑅 ↑m {𝑋, 𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapprop.f | . 2 ⊢ 𝐹 = {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉} | |
| 2 | simp3r 1203 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → 𝑅 ∈ 𝑊) | |
| 3 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) → 𝑋 ∈ 𝑉) | |
| 4 | simpl 482 | . . . 4 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) → 𝑌 ∈ 𝑉) | |
| 5 | simpl 482 | . . . 4 ⊢ ((𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊) → 𝑋 ≠ 𝑌) | |
| 6 | 3, 4, 5 | 3anim123i 1151 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ≠ 𝑌)) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) → 𝐵 ∈ 𝑅) | |
| 9 | 7, 8 | anim12i 613 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅)) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅)) |
| 10 | 9 | 3adant3 1132 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅)) |
| 11 | fprmappr 48287 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ≠ 𝑌) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅)) → {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉} ∈ (𝑅 ↑m {𝑋, 𝑌})) | |
| 12 | 2, 6, 10, 11 | syl3anc 1373 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉} ∈ (𝑅 ↑m {𝑋, 𝑌})) |
| 13 | 1, 12 | eqeltrid 2839 | 1 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → 𝐹 ∈ (𝑅 ↑m {𝑋, 𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {cpr 4608 〈cop 4612 (class class class)co 7410 ↑m cmap 8845 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 |
| This theorem is referenced by: lincvalpr 48361 ldepspr 48416 |
| Copyright terms: Public domain | W3C validator |