![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapprop | Structured version Visualization version GIF version |
Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019.) (Proof shortened by AV, 2-Jun-2024.) |
Ref | Expression |
---|---|
mapprop.f | ⊢ 𝐹 = {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉} |
Ref | Expression |
---|---|
mapprop | ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → 𝐹 ∈ (𝑅 ↑m {𝑋, 𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapprop.f | . 2 ⊢ 𝐹 = {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉} | |
2 | simp3r 1201 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → 𝑅 ∈ 𝑊) | |
3 | simpl 482 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) → 𝑋 ∈ 𝑉) | |
4 | simpl 482 | . . . 4 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) → 𝑌 ∈ 𝑉) | |
5 | simpl 482 | . . . 4 ⊢ ((𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊) → 𝑋 ≠ 𝑌) | |
6 | 3, 4, 5 | 3anim123i 1150 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ≠ 𝑌)) |
7 | simpr 484 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
8 | simpr 484 | . . . . 5 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) → 𝐵 ∈ 𝑅) | |
9 | 7, 8 | anim12i 613 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅)) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅)) |
10 | 9 | 3adant3 1131 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅)) |
11 | fprmappr 48190 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ≠ 𝑌) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅)) → {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉} ∈ (𝑅 ↑m {𝑋, 𝑌})) | |
12 | 2, 6, 10, 11 | syl3anc 1370 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → {〈𝑋, 𝐴〉, 〈𝑌, 𝐵〉} ∈ (𝑅 ↑m {𝑋, 𝑌})) |
13 | 1, 12 | eqeltrid 2843 | 1 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → 𝐹 ∈ (𝑅 ↑m {𝑋, 𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {cpr 4633 〈cop 4637 (class class class)co 7431 ↑m cmap 8865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 |
This theorem is referenced by: lincvalpr 48264 ldepspr 48319 |
Copyright terms: Public domain | W3C validator |