![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapprop | Structured version Visualization version GIF version |
Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019.) (Proof shortened by AV, 2-Jun-2024.) |
Ref | Expression |
---|---|
mapprop.f | ⊢ 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} |
Ref | Expression |
---|---|
mapprop | ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → 𝐹 ∈ (𝑅 ↑m {𝑋, 𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapprop.f | . 2 ⊢ 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} | |
2 | simp3r 1202 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → 𝑅 ∈ 𝑊) | |
3 | simpl 483 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) → 𝑋 ∈ 𝑉) | |
4 | simpl 483 | . . . 4 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) → 𝑌 ∈ 𝑉) | |
5 | simpl 483 | . . . 4 ⊢ ((𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊) → 𝑋 ≠ 𝑌) | |
6 | 3, 4, 5 | 3anim123i 1151 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ≠ 𝑌)) |
7 | simpr 485 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
8 | simpr 485 | . . . . 5 ⊢ ((𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) → 𝐵 ∈ 𝑅) | |
9 | 7, 8 | anim12i 613 | . . . 4 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅)) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅)) |
10 | 9 | 3adant3 1132 | . . 3 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅)) |
11 | fprmappr 47011 | . . 3 ⊢ ((𝑅 ∈ 𝑊 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ≠ 𝑌) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑅)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∈ (𝑅 ↑m {𝑋, 𝑌})) | |
12 | 2, 6, 10, 11 | syl3anc 1371 | . 2 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∈ (𝑅 ↑m {𝑋, 𝑌})) |
13 | 1, 12 | eqeltrid 2837 | 1 ⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑅) ∧ (𝑌 ∈ 𝑉 ∧ 𝐵 ∈ 𝑅) ∧ (𝑋 ≠ 𝑌 ∧ 𝑅 ∈ 𝑊)) → 𝐹 ∈ (𝑅 ↑m {𝑋, 𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 {cpr 4630 ⟨cop 4634 (class class class)co 7408 ↑m cmap 8819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 |
This theorem is referenced by: lincvalpr 47089 ldepspr 47144 |
Copyright terms: Public domain | W3C validator |