Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapprop Structured version   Visualization version   GIF version

Theorem mapprop 43759
Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019.)
Hypothesis
Ref Expression
mapprop.f 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}
Assertion
Ref Expression
mapprop (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹 ∈ (𝑅𝑚 {𝑋, 𝑌}))

Proof of Theorem mapprop
StepHypRef Expression
1 simpl 475 . . . . . . 7 ((𝑋𝑉𝐴𝑅) → 𝑋𝑉)
2 simpl 475 . . . . . . 7 ((𝑌𝑉𝐵𝑅) → 𝑌𝑉)
31, 2anim12i 603 . . . . . 6 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅)) → (𝑋𝑉𝑌𝑉))
433adant3 1112 . . . . 5 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝑋𝑉𝑌𝑉))
5 simpr 477 . . . . . . 7 ((𝑋𝑉𝐴𝑅) → 𝐴𝑅)
6 simpr 477 . . . . . . 7 ((𝑌𝑉𝐵𝑅) → 𝐵𝑅)
75, 6anim12i 603 . . . . . 6 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅)) → (𝐴𝑅𝐵𝑅))
873adant3 1112 . . . . 5 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝐴𝑅𝐵𝑅))
9 simpl 475 . . . . . 6 ((𝑋𝑌𝑅𝑊) → 𝑋𝑌)
1093ad2ant3 1115 . . . . 5 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝑋𝑌)
11 fprg 6742 . . . . 5 (((𝑋𝑉𝑌𝑉) ∧ (𝐴𝑅𝐵𝑅) ∧ 𝑋𝑌) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
124, 8, 10, 11syl3anc 1351 . . . 4 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
13 mapprop.f . . . . 5 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}
1413feq1i 6337 . . . 4 (𝐹:{𝑋, 𝑌}⟶{𝐴, 𝐵} ↔ {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}:{𝑋, 𝑌}⟶{𝐴, 𝐵})
1512, 14sylibr 226 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹:{𝑋, 𝑌}⟶{𝐴, 𝐵})
16 prssi 4629 . . . . 5 ((𝐴𝑅𝐵𝑅) → {𝐴, 𝐵} ⊆ 𝑅)
177, 16syl 17 . . . 4 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅)) → {𝐴, 𝐵} ⊆ 𝑅)
18173adant3 1112 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → {𝐴, 𝐵} ⊆ 𝑅)
1915, 18fssd 6360 . 2 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹:{𝑋, 𝑌}⟶𝑅)
20 simpr 477 . . . 4 ((𝑋𝑌𝑅𝑊) → 𝑅𝑊)
21203ad2ant3 1115 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝑅𝑊)
22 prex 5190 . . 3 {𝑋, 𝑌} ∈ V
23 elmapg 8221 . . 3 ((𝑅𝑊 ∧ {𝑋, 𝑌} ∈ V) → (𝐹 ∈ (𝑅𝑚 {𝑋, 𝑌}) ↔ 𝐹:{𝑋, 𝑌}⟶𝑅))
2421, 22, 23sylancl 577 . 2 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝐹 ∈ (𝑅𝑚 {𝑋, 𝑌}) ↔ 𝐹:{𝑋, 𝑌}⟶𝑅))
2519, 24mpbird 249 1 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹 ∈ (𝑅𝑚 {𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  Vcvv 3415  wss 3831  {cpr 4444  cop 4448  wf 6186  (class class class)co 6978  𝑚 cmap 8208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-br 4931  df-opab 4993  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-fv 6198  df-ov 6981  df-oprab 6982  df-mpo 6983  df-map 8210
This theorem is referenced by:  lincvalpr  43841  ldepspr  43896
  Copyright terms: Public domain W3C validator