Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapprop Structured version   Visualization version   GIF version

Theorem mapprop 46512
Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019.) (Proof shortened by AV, 2-Jun-2024.)
Hypothesis
Ref Expression
mapprop.f 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}
Assertion
Ref Expression
mapprop (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹 ∈ (𝑅m {𝑋, 𝑌}))

Proof of Theorem mapprop
StepHypRef Expression
1 mapprop.f . 2 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}
2 simp3r 1203 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝑅𝑊)
3 simpl 484 . . . 4 ((𝑋𝑉𝐴𝑅) → 𝑋𝑉)
4 simpl 484 . . . 4 ((𝑌𝑉𝐵𝑅) → 𝑌𝑉)
5 simpl 484 . . . 4 ((𝑋𝑌𝑅𝑊) → 𝑋𝑌)
63, 4, 53anim123i 1152 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝑋𝑉𝑌𝑉𝑋𝑌))
7 simpr 486 . . . . 5 ((𝑋𝑉𝐴𝑅) → 𝐴𝑅)
8 simpr 486 . . . . 5 ((𝑌𝑉𝐵𝑅) → 𝐵𝑅)
97, 8anim12i 614 . . . 4 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅)) → (𝐴𝑅𝐵𝑅))
1093adant3 1133 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝐴𝑅𝐵𝑅))
11 fprmappr 46511 . . 3 ((𝑅𝑊 ∧ (𝑋𝑉𝑌𝑉𝑋𝑌) ∧ (𝐴𝑅𝐵𝑅)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∈ (𝑅m {𝑋, 𝑌}))
122, 6, 10, 11syl3anc 1372 . 2 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∈ (𝑅m {𝑋, 𝑌}))
131, 12eqeltrid 2838 1 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹 ∈ (𝑅m {𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  {cpr 4592  cop 4596  (class class class)co 7361  m cmap 8771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-map 8773
This theorem is referenced by:  lincvalpr  46589  ldepspr  46644
  Copyright terms: Public domain W3C validator