Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapprop Structured version   Visualization version   GIF version

Theorem mapprop 44674
Description: An unordered pair containing two ordered pairs as an element of the mapping operation. (Contributed by AV, 16-Apr-2019.) (Proof shortened by AV, 2-Jun-2024.)
Hypothesis
Ref Expression
mapprop.f 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}
Assertion
Ref Expression
mapprop (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹 ∈ (𝑅m {𝑋, 𝑌}))

Proof of Theorem mapprop
StepHypRef Expression
1 mapprop.f . 2 𝐹 = {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩}
2 simp3r 1199 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝑅𝑊)
3 simpl 486 . . . 4 ((𝑋𝑉𝐴𝑅) → 𝑋𝑉)
4 simpl 486 . . . 4 ((𝑌𝑉𝐵𝑅) → 𝑌𝑉)
5 simpl 486 . . . 4 ((𝑋𝑌𝑅𝑊) → 𝑋𝑌)
63, 4, 53anim123i 1148 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝑋𝑉𝑌𝑉𝑋𝑌))
7 simpr 488 . . . . 5 ((𝑋𝑉𝐴𝑅) → 𝐴𝑅)
8 simpr 488 . . . . 5 ((𝑌𝑉𝐵𝑅) → 𝐵𝑅)
97, 8anim12i 615 . . . 4 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅)) → (𝐴𝑅𝐵𝑅))
1093adant3 1129 . . 3 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → (𝐴𝑅𝐵𝑅))
11 fprmappr 44673 . . 3 ((𝑅𝑊 ∧ (𝑋𝑉𝑌𝑉𝑋𝑌) ∧ (𝐴𝑅𝐵𝑅)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∈ (𝑅m {𝑋, 𝑌}))
122, 6, 10, 11syl3anc 1368 . 2 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → {⟨𝑋, 𝐴⟩, ⟨𝑌, 𝐵⟩} ∈ (𝑅m {𝑋, 𝑌}))
131, 12eqeltrid 2920 1 (((𝑋𝑉𝐴𝑅) ∧ (𝑌𝑉𝐵𝑅) ∧ (𝑋𝑌𝑅𝑊)) → 𝐹 ∈ (𝑅m {𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  {cpr 4552  cop 4556  (class class class)co 7149  m cmap 8402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fv 6351  df-ov 7152  df-oprab 7153  df-mpo 7154  df-map 8404
This theorem is referenced by:  lincvalpr  44753  ldepspr  44808
  Copyright terms: Public domain W3C validator