Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprmappr Structured version   Visualization version   GIF version

Theorem fprmappr 46507
Description: A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024.)
Assertion
Ref Expression
fprmappr ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}))

Proof of Theorem fprmappr
StepHypRef Expression
1 3simpa 1149 . . . . . 6 ((𝐴𝑈𝐵𝑊𝐴𝐵) → (𝐴𝑈𝐵𝑊))
21adantr 482 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑈𝐵𝑊))
3 simpr 486 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝑋𝐷𝑋))
4 simpl3 1194 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → 𝐴𝐵)
5 fprg 7102 . . . . 5 (((𝐴𝑈𝐵𝑊) ∧ (𝐶𝑋𝐷𝑋) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
62, 3, 4, 5syl3anc 1372 . . . 4 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
7 prssi 4782 . . . . 5 ((𝐶𝑋𝐷𝑋) → {𝐶, 𝐷} ⊆ 𝑋)
87adantl 483 . . . 4 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {𝐶, 𝐷} ⊆ 𝑋)
96, 8fssd 6687 . . 3 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)
1093adant1 1131 . 2 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)
11 simp1 1137 . . 3 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → 𝑋𝑉)
12 prex 5390 . . . 4 {𝐴, 𝐵} ∈ V
1312a1i 11 . . 3 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {𝐴, 𝐵} ∈ V)
1411, 13elmapd 8782 . 2 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}) ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋))
1510, 14mpbird 257 1 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088  wcel 2107  wne 2940  Vcvv 3444  wss 3911  {cpr 4589  cop 4593  wf 6493  (class class class)co 7358  m cmap 8768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-sbc 3741  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-fv 6505  df-ov 7361  df-oprab 7362  df-mpo 7363  df-map 8770
This theorem is referenced by:  mapprop  46508  fv2arycl  46820  2arymptfv  46822
  Copyright terms: Public domain W3C validator