Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprmappr Structured version   Visualization version   GIF version

Theorem fprmappr 45681
Description: A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024.)
Assertion
Ref Expression
fprmappr ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}))

Proof of Theorem fprmappr
StepHypRef Expression
1 3simpa 1147 . . . . . 6 ((𝐴𝑈𝐵𝑊𝐴𝐵) → (𝐴𝑈𝐵𝑊))
21adantr 481 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑈𝐵𝑊))
3 simpr 485 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝑋𝐷𝑋))
4 simpl3 1192 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → 𝐴𝐵)
5 fprg 7027 . . . . 5 (((𝐴𝑈𝐵𝑊) ∧ (𝐶𝑋𝐷𝑋) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
62, 3, 4, 5syl3anc 1370 . . . 4 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
7 prssi 4754 . . . . 5 ((𝐶𝑋𝐷𝑋) → {𝐶, 𝐷} ⊆ 𝑋)
87adantl 482 . . . 4 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {𝐶, 𝐷} ⊆ 𝑋)
96, 8fssd 6618 . . 3 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)
1093adant1 1129 . 2 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)
11 simp1 1135 . . 3 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → 𝑋𝑉)
12 prex 5355 . . . 4 {𝐴, 𝐵} ∈ V
1312a1i 11 . . 3 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {𝐴, 𝐵} ∈ V)
1411, 13elmapd 8629 . 2 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}) ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋))
1510, 14mpbird 256 1 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  wne 2943  Vcvv 3432  wss 3887  {cpr 4563  cop 4567  wf 6429  (class class class)co 7275  m cmap 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617
This theorem is referenced by:  mapprop  45682  fv2arycl  45994  2arymptfv  45996
  Copyright terms: Public domain W3C validator