| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fprmappr | Structured version Visualization version GIF version | ||
| Description: A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024.) |
| Ref | Expression |
|---|---|
| fprmappr | ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ (𝑋 ↑m {𝐴, 𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 1148 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊)) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊)) |
| 3 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) | |
| 4 | simpl3 1194 | . . . . 5 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐴 ≠ 𝐵) | |
| 5 | fprg 7127 | . . . . 5 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) | |
| 6 | 2, 3, 4, 5 | syl3anc 1373 | . . . 4 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
| 7 | prssi 4785 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → {𝐶, 𝐷} ⊆ 𝑋) | |
| 8 | 7 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {𝐶, 𝐷} ⊆ 𝑋) |
| 9 | 6, 8 | fssd 6705 | . . 3 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶𝑋) |
| 10 | 9 | 3adant1 1130 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶𝑋) |
| 11 | simp1 1136 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝑋 ∈ 𝑉) | |
| 12 | prex 5392 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {𝐴, 𝐵} ∈ V) |
| 14 | 11, 13 | elmapd 8813 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ({〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ (𝑋 ↑m {𝐴, 𝐵}) ↔ {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉}:{𝐴, 𝐵}⟶𝑋)) |
| 15 | 10, 14 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {〈𝐴, 𝐶〉, 〈𝐵, 𝐷〉} ∈ (𝑋 ↑m {𝐴, 𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 {cpr 4591 〈cop 4595 ⟶wf 6507 (class class class)co 7387 ↑m cmap 8799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 |
| This theorem is referenced by: mapprop 48334 fv2arycl 48637 2arymptfv 48639 |
| Copyright terms: Public domain | W3C validator |