![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fprmappr | Structured version Visualization version GIF version |
Description: A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024.) |
Ref | Expression |
---|---|
fprmappr | ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋 ↑m {𝐴, 𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1145 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊)) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊)) |
3 | simpr 484 | . . . . 5 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) | |
4 | simpl3 1190 | . . . . 5 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐴 ≠ 𝐵) | |
5 | fprg 7149 | . . . . 5 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) ∧ 𝐴 ≠ 𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) | |
6 | 2, 3, 4, 5 | syl3anc 1368 | . . . 4 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷}) |
7 | prssi 4819 | . . . . 5 ⊢ ((𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) → {𝐶, 𝐷} ⊆ 𝑋) | |
8 | 7 | adantl 481 | . . . 4 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {𝐶, 𝐷} ⊆ 𝑋) |
9 | 6, 8 | fssd 6729 | . . 3 ⊢ (((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋) |
10 | 9 | 3adant1 1127 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋) |
11 | simp1 1133 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝑋 ∈ 𝑉) | |
12 | prex 5425 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {𝐴, 𝐵} ∈ V) |
14 | 11, 13 | elmapd 8836 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋 ↑m {𝐴, 𝐵}) ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)) |
15 | 10, 14 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋 ↑m {𝐴, 𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ⊆ wss 3943 {cpr 4625 ⟨cop 4629 ⟶wf 6533 (class class class)co 7405 ↑m cmap 8822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8824 |
This theorem is referenced by: mapprop 47298 fv2arycl 47609 2arymptfv 47611 |
Copyright terms: Public domain | W3C validator |