Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprmappr Structured version   Visualization version   GIF version

Theorem fprmappr 44915
 Description: A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024.)
Assertion
Ref Expression
fprmappr ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}))

Proof of Theorem fprmappr
StepHypRef Expression
1 3simpa 1145 . . . . . 6 ((𝐴𝑈𝐵𝑊𝐴𝐵) → (𝐴𝑈𝐵𝑊))
21adantr 484 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑈𝐵𝑊))
3 simpr 488 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝑋𝐷𝑋))
4 simpl3 1190 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → 𝐴𝐵)
5 fprg 6904 . . . . 5 (((𝐴𝑈𝐵𝑊) ∧ (𝐶𝑋𝐷𝑋) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
62, 3, 4, 5syl3anc 1368 . . . 4 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
7 prssi 4717 . . . . 5 ((𝐶𝑋𝐷𝑋) → {𝐶, 𝐷} ⊆ 𝑋)
87adantl 485 . . . 4 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {𝐶, 𝐷} ⊆ 𝑋)
96, 8fssd 6510 . . 3 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)
1093adant1 1127 . 2 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)
11 simp1 1133 . . 3 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → 𝑋𝑉)
12 prex 5302 . . . 4 {𝐴, 𝐵} ∈ V
1312a1i 11 . . 3 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {𝐴, 𝐵} ∈ V)
1411, 13elmapd 8421 . 2 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}) ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋))
1510, 14mpbird 260 1 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   ∈ wcel 2111   ≠ wne 2987  Vcvv 3442   ⊆ wss 3883  {cpr 4530  ⟨cop 4534  ⟶wf 6328  (class class class)co 7145   ↑m cmap 8407 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3444  df-sbc 3723  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4805  df-br 5035  df-opab 5097  df-id 5429  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-fv 6340  df-ov 7148  df-oprab 7149  df-mpo 7150  df-map 8409 This theorem is referenced by:  mapprop  44916  fv2arycl  45228  2arymptfv  45230
 Copyright terms: Public domain W3C validator