Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprmappr Structured version   Visualization version   GIF version

Theorem fprmappr 47505
Description: A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024.)
Assertion
Ref Expression
fprmappr ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}))

Proof of Theorem fprmappr
StepHypRef Expression
1 3simpa 1145 . . . . . 6 ((𝐴𝑈𝐵𝑊𝐴𝐵) → (𝐴𝑈𝐵𝑊))
21adantr 479 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑈𝐵𝑊))
3 simpr 483 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝑋𝐷𝑋))
4 simpl3 1190 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → 𝐴𝐵)
5 fprg 7170 . . . . 5 (((𝐴𝑈𝐵𝑊) ∧ (𝐶𝑋𝐷𝑋) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
62, 3, 4, 5syl3anc 1368 . . . 4 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
7 prssi 4829 . . . . 5 ((𝐶𝑋𝐷𝑋) → {𝐶, 𝐷} ⊆ 𝑋)
87adantl 480 . . . 4 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {𝐶, 𝐷} ⊆ 𝑋)
96, 8fssd 6745 . . 3 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)
1093adant1 1127 . 2 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)
11 simp1 1133 . . 3 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → 𝑋𝑉)
12 prex 5438 . . . 4 {𝐴, 𝐵} ∈ V
1312a1i 11 . . 3 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {𝐴, 𝐵} ∈ V)
1411, 13elmapd 8867 . 2 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}) ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋))
1510, 14mpbird 256 1 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084  wcel 2098  wne 2937  Vcvv 3473  wss 3949  {cpr 4634  cop 4638  wf 6549  (class class class)co 7426  m cmap 8853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-map 8855
This theorem is referenced by:  mapprop  47506  fv2arycl  47817  2arymptfv  47819
  Copyright terms: Public domain W3C validator