Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprmappr Structured version   Visualization version   GIF version

Theorem fprmappr 48333
Description: A function with a domain of two elements as element of the mapping operator applied to a pair. (Contributed by AV, 20-May-2024.)
Assertion
Ref Expression
fprmappr ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}))

Proof of Theorem fprmappr
StepHypRef Expression
1 3simpa 1148 . . . . . 6 ((𝐴𝑈𝐵𝑊𝐴𝐵) → (𝐴𝑈𝐵𝑊))
21adantr 480 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → (𝐴𝑈𝐵𝑊))
3 simpr 484 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → (𝐶𝑋𝐷𝑋))
4 simpl3 1194 . . . . 5 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → 𝐴𝐵)
5 fprg 7093 . . . . 5 (((𝐴𝑈𝐵𝑊) ∧ (𝐶𝑋𝐷𝑋) ∧ 𝐴𝐵) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
62, 3, 4, 5syl3anc 1373 . . . 4 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶{𝐶, 𝐷})
7 prssi 4775 . . . . 5 ((𝐶𝑋𝐷𝑋) → {𝐶, 𝐷} ⊆ 𝑋)
87adantl 481 . . . 4 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {𝐶, 𝐷} ⊆ 𝑋)
96, 8fssd 6673 . . 3 (((𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)
1093adant1 1130 . 2 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋)
11 simp1 1136 . . 3 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → 𝑋𝑉)
12 prex 5379 . . . 4 {𝐴, 𝐵} ∈ V
1312a1i 11 . . 3 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {𝐴, 𝐵} ∈ V)
1411, 13elmapd 8774 . 2 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → ({⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}) ↔ {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩}:{𝐴, 𝐵}⟶𝑋))
1510, 14mpbird 257 1 ((𝑋𝑉 ∧ (𝐴𝑈𝐵𝑊𝐴𝐵) ∧ (𝐶𝑋𝐷𝑋)) → {⟨𝐴, 𝐶⟩, ⟨𝐵, 𝐷⟩} ∈ (𝑋m {𝐴, 𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wne 2925  Vcvv 3438  wss 3905  {cpr 4581  cop 4585  wf 6482  (class class class)co 7353  m cmap 8760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762
This theorem is referenced by:  mapprop  48334  fv2arycl  48637  2arymptfv  48639
  Copyright terms: Public domain W3C validator