![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metustrel | Structured version Visualization version GIF version |
Description: Elements of the filter base generated by the metric π· are relations. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
metust.1 | β’ πΉ = ran (π β β+ β¦ (β‘π· β (0[,)π))) |
Ref | Expression |
---|---|
metustrel | β’ ((π· β (PsMetβπ) β§ π΄ β πΉ) β Rel π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metust.1 | . . . 4 β’ πΉ = ran (π β β+ β¦ (β‘π· β (0[,)π))) | |
2 | 1 | metustss 24059 | . . 3 β’ ((π· β (PsMetβπ) β§ π΄ β πΉ) β π΄ β (π Γ π)) |
3 | xpss 5692 | . . 3 β’ (π Γ π) β (V Γ V) | |
4 | 2, 3 | sstrdi 3994 | . 2 β’ ((π· β (PsMetβπ) β§ π΄ β πΉ) β π΄ β (V Γ V)) |
5 | df-rel 5683 | . 2 β’ (Rel π΄ β π΄ β (V Γ V)) | |
6 | 4, 5 | sylibr 233 | 1 β’ ((π· β (PsMetβπ) β§ π΄ β πΉ) β Rel π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3948 β¦ cmpt 5231 Γ cxp 5674 β‘ccnv 5675 ran crn 5677 β cima 5679 Rel wrel 5681 βcfv 6543 (class class class)co 7408 0cc0 11109 β+crp 12973 [,)cico 13325 PsMetcpsmet 20927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-xr 11251 df-psmet 20935 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |