MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustto Structured version   Visualization version   GIF version

Theorem metustto 23163
Description: Any two elements of the filter base generated by the metric 𝐷 can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustto ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
Distinct variable groups:   𝐵,𝑎   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustto
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . . . . 5 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ+)
21rpred 12432 . . . 4 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ)
3 simplr 767 . . . . 5 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ+)
43rpred 12432 . . . 4 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ)
5 simpllr 774 . . . . . . . 8 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝑏 ∈ ℝ+)
65rpred 12432 . . . . . . 7 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝑏 ∈ ℝ)
7 0xr 10688 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 0 ∈ ℝ*)
9 simpl 485 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑏 ∈ ℝ)
109rexrd 10691 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑏 ∈ ℝ*)
11 0le0 11739 . . . . . . . . . 10 0 ≤ 0
1211a1i 11 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 0 ≤ 0)
13 simpr 487 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑎𝑏)
14 icossico 12807 . . . . . . . . 9 (((0 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑎𝑏)) → (0[,)𝑎) ⊆ (0[,)𝑏))
158, 10, 12, 13, 14syl22anc 836 . . . . . . . 8 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → (0[,)𝑎) ⊆ (0[,)𝑏))
16 imass2 5965 . . . . . . . 8 ((0[,)𝑎) ⊆ (0[,)𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
1715, 16syl 17 . . . . . . 7 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
186, 17sylancom 590 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
19 simplrl 775 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐴 = (𝐷 “ (0[,)𝑎)))
20 simplrr 776 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐵 = (𝐷 “ (0[,)𝑏)))
2118, 19, 203sstr4d 4014 . . . . 5 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐴𝐵)
2221orcd 869 . . . 4 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → (𝐴𝐵𝐵𝐴))
23 simplll 773 . . . . . . . 8 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝑎 ∈ ℝ+)
2423rpred 12432 . . . . . . 7 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝑎 ∈ ℝ)
257a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 0 ∈ ℝ*)
26 simpl 485 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑎 ∈ ℝ)
2726rexrd 10691 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑎 ∈ ℝ*)
2811a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 0 ≤ 0)
29 simpr 487 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑏𝑎)
30 icossico 12807 . . . . . . . . 9 (((0 ∈ ℝ*𝑎 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑏𝑎)) → (0[,)𝑏) ⊆ (0[,)𝑎))
3125, 27, 28, 29, 30syl22anc 836 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → (0[,)𝑏) ⊆ (0[,)𝑎))
32 imass2 5965 . . . . . . . 8 ((0[,)𝑏) ⊆ (0[,)𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
3331, 32syl 17 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
3424, 33sylancom 590 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
35 simplrr 776 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐵 = (𝐷 “ (0[,)𝑏)))
36 simplrl 775 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐴 = (𝐷 “ (0[,)𝑎)))
3734, 35, 363sstr4d 4014 . . . . 5 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐵𝐴)
3837olcd 870 . . . 4 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → (𝐴𝐵𝐵𝐴))
392, 4, 22, 38lecasei 10746 . . 3 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → (𝐴𝐵𝐵𝐴))
4039adantlll 716 . 2 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → (𝐴𝐵𝐵𝐴))
41 metust.1 . . . . . 6 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4241metustel 23160 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4342biimpa 479 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
44433adant3 1128 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
45 oveq2 7164 . . . . . . . . . 10 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
4645imaeq2d 5929 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
4746cbvmptv 5169 . . . . . . . 8 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
4847rneqi 5807 . . . . . . 7 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
4941, 48eqtri 2844 . . . . . 6 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
5049metustel 23160 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏))))
5150biimpa 479 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏)))
52513adant2 1127 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏)))
53 reeanv 3367 . . 3 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏))) ↔ (∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)) ∧ ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏))))
5444, 52, 53sylanbrc 585 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏))))
5540, 54r19.29vva 3336 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wrex 3139  wss 3936   class class class wbr 5066  cmpt 5146  ccnv 5554  ran crn 5556  cima 5558  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  *cxr 10674  cle 10676  +crp 12390  [,)cico 12741  PsMetcpsmet 20529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-addrcl 10598  ax-rnegex 10608  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-rp 12391  df-ico 12745
This theorem is referenced by:  metustfbas  23167
  Copyright terms: Public domain W3C validator