MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustto Structured version   Visualization version   GIF version

Theorem metustto 24457
Description: Any two elements of the filter base generated by the metric 𝐷 can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustto ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
Distinct variable groups:   𝐵,𝑎   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustto
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ+)
21rpred 12955 . . . 4 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ)
3 simplr 768 . . . . 5 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ+)
43rpred 12955 . . . 4 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ)
5 simpllr 775 . . . . . . . 8 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝑏 ∈ ℝ+)
65rpred 12955 . . . . . . 7 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝑏 ∈ ℝ)
7 0xr 11181 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 0 ∈ ℝ*)
9 simpl 482 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑏 ∈ ℝ)
109rexrd 11184 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑏 ∈ ℝ*)
11 0le0 12247 . . . . . . . . . 10 0 ≤ 0
1211a1i 11 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 0 ≤ 0)
13 simpr 484 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑎𝑏)
14 icossico 13337 . . . . . . . . 9 (((0 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑎𝑏)) → (0[,)𝑎) ⊆ (0[,)𝑏))
158, 10, 12, 13, 14syl22anc 838 . . . . . . . 8 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → (0[,)𝑎) ⊆ (0[,)𝑏))
16 imass2 6057 . . . . . . . 8 ((0[,)𝑎) ⊆ (0[,)𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
1715, 16syl 17 . . . . . . 7 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
186, 17sylancom 588 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
19 simplrl 776 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐴 = (𝐷 “ (0[,)𝑎)))
20 simplrr 777 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐵 = (𝐷 “ (0[,)𝑏)))
2118, 19, 203sstr4d 3993 . . . . 5 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐴𝐵)
2221orcd 873 . . . 4 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → (𝐴𝐵𝐵𝐴))
23 simplll 774 . . . . . . . 8 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝑎 ∈ ℝ+)
2423rpred 12955 . . . . . . 7 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝑎 ∈ ℝ)
257a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 0 ∈ ℝ*)
26 simpl 482 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑎 ∈ ℝ)
2726rexrd 11184 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑎 ∈ ℝ*)
2811a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 0 ≤ 0)
29 simpr 484 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑏𝑎)
30 icossico 13337 . . . . . . . . 9 (((0 ∈ ℝ*𝑎 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑏𝑎)) → (0[,)𝑏) ⊆ (0[,)𝑎))
3125, 27, 28, 29, 30syl22anc 838 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → (0[,)𝑏) ⊆ (0[,)𝑎))
32 imass2 6057 . . . . . . . 8 ((0[,)𝑏) ⊆ (0[,)𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
3331, 32syl 17 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
3424, 33sylancom 588 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
35 simplrr 777 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐵 = (𝐷 “ (0[,)𝑏)))
36 simplrl 776 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐴 = (𝐷 “ (0[,)𝑎)))
3734, 35, 363sstr4d 3993 . . . . 5 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐵𝐴)
3837olcd 874 . . . 4 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → (𝐴𝐵𝐵𝐴))
392, 4, 22, 38lecasei 11240 . . 3 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → (𝐴𝐵𝐵𝐴))
4039adantlll 718 . 2 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → (𝐴𝐵𝐵𝐴))
41 metust.1 . . . . . 6 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4241metustel 24454 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4342biimpa 476 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
44433adant3 1132 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
45 oveq2 7361 . . . . . . . . . 10 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
4645imaeq2d 6015 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
4746cbvmptv 5199 . . . . . . . 8 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
4847rneqi 5883 . . . . . . 7 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
4941, 48eqtri 2752 . . . . . 6 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
5049metustel 24454 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏))))
5150biimpa 476 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏)))
52513adant2 1131 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏)))
53 reeanv 3201 . . 3 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏))) ↔ (∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)) ∧ ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏))))
5444, 52, 53sylanbrc 583 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏))))
5540, 54r19.29vva 3189 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3905   class class class wbr 5095  cmpt 5176  ccnv 5622  ran crn 5624  cima 5626  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  *cxr 11167  cle 11169  +crp 12911  [,)cico 13268  PsMetcpsmet 21263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-addrcl 11089  ax-rnegex 11099  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-rp 12912  df-ico 13272
This theorem is referenced by:  metustfbas  24461
  Copyright terms: Public domain W3C validator