MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustto Structured version   Visualization version   GIF version

Theorem metustto 24587
Description: Any two elements of the filter base generated by the metric 𝐷 can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustto ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
Distinct variable groups:   𝐵,𝑎   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustto
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ+)
21rpred 13099 . . . 4 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ)
3 simplr 768 . . . . 5 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ+)
43rpred 13099 . . . 4 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ)
5 simpllr 775 . . . . . . . 8 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝑏 ∈ ℝ+)
65rpred 13099 . . . . . . 7 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝑏 ∈ ℝ)
7 0xr 11337 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 0 ∈ ℝ*)
9 simpl 482 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑏 ∈ ℝ)
109rexrd 11340 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑏 ∈ ℝ*)
11 0le0 12394 . . . . . . . . . 10 0 ≤ 0
1211a1i 11 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 0 ≤ 0)
13 simpr 484 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑎𝑏)
14 icossico 13477 . . . . . . . . 9 (((0 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑎𝑏)) → (0[,)𝑎) ⊆ (0[,)𝑏))
158, 10, 12, 13, 14syl22anc 838 . . . . . . . 8 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → (0[,)𝑎) ⊆ (0[,)𝑏))
16 imass2 6132 . . . . . . . 8 ((0[,)𝑎) ⊆ (0[,)𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
1715, 16syl 17 . . . . . . 7 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
186, 17sylancom 587 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
19 simplrl 776 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐴 = (𝐷 “ (0[,)𝑎)))
20 simplrr 777 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐵 = (𝐷 “ (0[,)𝑏)))
2118, 19, 203sstr4d 4056 . . . . 5 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐴𝐵)
2221orcd 872 . . . 4 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → (𝐴𝐵𝐵𝐴))
23 simplll 774 . . . . . . . 8 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝑎 ∈ ℝ+)
2423rpred 13099 . . . . . . 7 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝑎 ∈ ℝ)
257a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 0 ∈ ℝ*)
26 simpl 482 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑎 ∈ ℝ)
2726rexrd 11340 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑎 ∈ ℝ*)
2811a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 0 ≤ 0)
29 simpr 484 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑏𝑎)
30 icossico 13477 . . . . . . . . 9 (((0 ∈ ℝ*𝑎 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑏𝑎)) → (0[,)𝑏) ⊆ (0[,)𝑎))
3125, 27, 28, 29, 30syl22anc 838 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → (0[,)𝑏) ⊆ (0[,)𝑎))
32 imass2 6132 . . . . . . . 8 ((0[,)𝑏) ⊆ (0[,)𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
3331, 32syl 17 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
3424, 33sylancom 587 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
35 simplrr 777 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐵 = (𝐷 “ (0[,)𝑏)))
36 simplrl 776 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐴 = (𝐷 “ (0[,)𝑎)))
3734, 35, 363sstr4d 4056 . . . . 5 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐵𝐴)
3837olcd 873 . . . 4 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → (𝐴𝐵𝐵𝐴))
392, 4, 22, 38lecasei 11396 . . 3 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → (𝐴𝐵𝐵𝐴))
4039adantlll 717 . 2 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → (𝐴𝐵𝐵𝐴))
41 metust.1 . . . . . 6 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4241metustel 24584 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4342biimpa 476 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
44433adant3 1132 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
45 oveq2 7456 . . . . . . . . . 10 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
4645imaeq2d 6089 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
4746cbvmptv 5279 . . . . . . . 8 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
4847rneqi 5962 . . . . . . 7 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
4941, 48eqtri 2768 . . . . . 6 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
5049metustel 24584 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏))))
5150biimpa 476 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏)))
52513adant2 1131 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏)))
53 reeanv 3235 . . 3 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏))) ↔ (∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)) ∧ ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏))))
5444, 52, 53sylanbrc 582 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏))))
5540, 54r19.29vva 3222 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976   class class class wbr 5166  cmpt 5249  ccnv 5699  ran crn 5701  cima 5703  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  *cxr 11323  cle 11325  +crp 13057  [,)cico 13409  PsMetcpsmet 21371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-addrcl 11245  ax-rnegex 11255  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-rp 13058  df-ico 13413
This theorem is referenced by:  metustfbas  24591
  Copyright terms: Public domain W3C validator