MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustto Structured version   Visualization version   GIF version

Theorem metustto 23160
Description: Any two elements of the filter base generated by the metric 𝐷 can be compared, like for RR+ (i.e. it's totally ordered). (Contributed by Thierry Arnoux, 22-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustto ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
Distinct variable groups:   𝐵,𝑎   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustto
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ+)
21rpred 12419 . . . 4 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ)
3 simplr 768 . . . . 5 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ+)
43rpred 12419 . . . 4 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ)
5 simpllr 775 . . . . . . . 8 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝑏 ∈ ℝ+)
65rpred 12419 . . . . . . 7 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝑏 ∈ ℝ)
7 0xr 10677 . . . . . . . . . 10 0 ∈ ℝ*
87a1i 11 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 0 ∈ ℝ*)
9 simpl 486 . . . . . . . . . 10 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑏 ∈ ℝ)
109rexrd 10680 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑏 ∈ ℝ*)
11 0le0 11726 . . . . . . . . . 10 0 ≤ 0
1211a1i 11 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 0 ≤ 0)
13 simpr 488 . . . . . . . . 9 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → 𝑎𝑏)
14 icossico 12795 . . . . . . . . 9 (((0 ∈ ℝ*𝑏 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑎𝑏)) → (0[,)𝑎) ⊆ (0[,)𝑏))
158, 10, 12, 13, 14syl22anc 837 . . . . . . . 8 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → (0[,)𝑎) ⊆ (0[,)𝑏))
16 imass2 5932 . . . . . . . 8 ((0[,)𝑎) ⊆ (0[,)𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
1715, 16syl 17 . . . . . . 7 ((𝑏 ∈ ℝ ∧ 𝑎𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
186, 17sylancom 591 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → (𝐷 “ (0[,)𝑎)) ⊆ (𝐷 “ (0[,)𝑏)))
19 simplrl 776 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐴 = (𝐷 “ (0[,)𝑎)))
20 simplrr 777 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐵 = (𝐷 “ (0[,)𝑏)))
2118, 19, 203sstr4d 3962 . . . . 5 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → 𝐴𝐵)
2221orcd 870 . . . 4 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑎𝑏) → (𝐴𝐵𝐵𝐴))
23 simplll 774 . . . . . . . 8 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝑎 ∈ ℝ+)
2423rpred 12419 . . . . . . 7 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝑎 ∈ ℝ)
257a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 0 ∈ ℝ*)
26 simpl 486 . . . . . . . . . 10 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑎 ∈ ℝ)
2726rexrd 10680 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑎 ∈ ℝ*)
2811a1i 11 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 0 ≤ 0)
29 simpr 488 . . . . . . . . 9 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → 𝑏𝑎)
30 icossico 12795 . . . . . . . . 9 (((0 ∈ ℝ*𝑎 ∈ ℝ*) ∧ (0 ≤ 0 ∧ 𝑏𝑎)) → (0[,)𝑏) ⊆ (0[,)𝑎))
3125, 27, 28, 29, 30syl22anc 837 . . . . . . . 8 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → (0[,)𝑏) ⊆ (0[,)𝑎))
32 imass2 5932 . . . . . . . 8 ((0[,)𝑏) ⊆ (0[,)𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
3331, 32syl 17 . . . . . . 7 ((𝑎 ∈ ℝ ∧ 𝑏𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
3424, 33sylancom 591 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → (𝐷 “ (0[,)𝑏)) ⊆ (𝐷 “ (0[,)𝑎)))
35 simplrr 777 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐵 = (𝐷 “ (0[,)𝑏)))
36 simplrl 776 . . . . . 6 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐴 = (𝐷 “ (0[,)𝑎)))
3734, 35, 363sstr4d 3962 . . . . 5 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → 𝐵𝐴)
3837olcd 871 . . . 4 ((((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) ∧ 𝑏𝑎) → (𝐴𝐵𝐵𝐴))
392, 4, 22, 38lecasei 10735 . . 3 (((𝑎 ∈ ℝ+𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → (𝐴𝐵𝐵𝐴))
4039adantlll 717 . 2 (((((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏 ∈ ℝ+) ∧ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏)))) → (𝐴𝐵𝐵𝐴))
41 metust.1 . . . . . 6 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
4241metustel 23157 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝐴𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎))))
4342biimpa 480 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
44433adant3 1129 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)))
45 oveq2 7143 . . . . . . . . . 10 (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏))
4645imaeq2d 5896 . . . . . . . . 9 (𝑎 = 𝑏 → (𝐷 “ (0[,)𝑎)) = (𝐷 “ (0[,)𝑏)))
4746cbvmptv 5133 . . . . . . . 8 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
4847rneqi 5771 . . . . . . 7 ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
4941, 48eqtri 2821 . . . . . 6 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑏)))
5049metustel 23157 . . . . 5 (𝐷 ∈ (PsMet‘𝑋) → (𝐵𝐹 ↔ ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏))))
5150biimpa 480 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏)))
52513adant2 1128 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏)))
53 reeanv 3320 . . 3 (∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏))) ↔ (∃𝑎 ∈ ℝ+ 𝐴 = (𝐷 “ (0[,)𝑎)) ∧ ∃𝑏 ∈ ℝ+ 𝐵 = (𝐷 “ (0[,)𝑏))))
5444, 52, 53sylanbrc 586 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → ∃𝑎 ∈ ℝ+𝑏 ∈ ℝ+ (𝐴 = (𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (𝐷 “ (0[,)𝑏))))
5540, 54r19.29vva 3292 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹𝐵𝐹) → (𝐴𝐵𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  wss 3881   class class class wbr 5030  cmpt 5110  ccnv 5518  ran crn 5520  cima 5522  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  *cxr 10663  cle 10665  +crp 12377  [,)cico 12728  PsMetcpsmet 20075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-addrcl 10587  ax-rnegex 10597  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-rp 12378  df-ico 12732
This theorem is referenced by:  metustfbas  23164
  Copyright terms: Public domain W3C validator