| Step | Hyp | Ref
| Expression |
| 1 | | simpll 767 |
. . . . 5
⊢ (((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ+) |
| 2 | 1 | rpred 13077 |
. . . 4
⊢ (((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) → 𝑎 ∈ ℝ) |
| 3 | | simplr 769 |
. . . . 5
⊢ (((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ+) |
| 4 | 3 | rpred 13077 |
. . . 4
⊢ (((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) → 𝑏 ∈ ℝ) |
| 5 | | simpllr 776 |
. . . . . . . 8
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑎 ≤ 𝑏) → 𝑏 ∈ ℝ+) |
| 6 | 5 | rpred 13077 |
. . . . . . 7
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑎 ≤ 𝑏) → 𝑏 ∈ ℝ) |
| 7 | | 0xr 11308 |
. . . . . . . . . 10
⊢ 0 ∈
ℝ* |
| 8 | 7 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏) → 0 ∈
ℝ*) |
| 9 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏) → 𝑏 ∈ ℝ) |
| 10 | 9 | rexrd 11311 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏) → 𝑏 ∈ ℝ*) |
| 11 | | 0le0 12367 |
. . . . . . . . . 10
⊢ 0 ≤
0 |
| 12 | 11 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏) → 0 ≤ 0) |
| 13 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏) → 𝑎 ≤ 𝑏) |
| 14 | | icossico 13457 |
. . . . . . . . 9
⊢ (((0
∈ ℝ* ∧ 𝑏 ∈ ℝ*) ∧ (0 ≤ 0
∧ 𝑎 ≤ 𝑏)) → (0[,)𝑎) ⊆ (0[,)𝑏)) |
| 15 | 8, 10, 12, 13, 14 | syl22anc 839 |
. . . . . . . 8
⊢ ((𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏) → (0[,)𝑎) ⊆ (0[,)𝑏)) |
| 16 | | imass2 6120 |
. . . . . . . 8
⊢
((0[,)𝑎) ⊆
(0[,)𝑏) → (◡𝐷 “ (0[,)𝑎)) ⊆ (◡𝐷 “ (0[,)𝑏))) |
| 17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ ((𝑏 ∈ ℝ ∧ 𝑎 ≤ 𝑏) → (◡𝐷 “ (0[,)𝑎)) ⊆ (◡𝐷 “ (0[,)𝑏))) |
| 18 | 6, 17 | sylancom 588 |
. . . . . 6
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑎 ≤ 𝑏) → (◡𝐷 “ (0[,)𝑎)) ⊆ (◡𝐷 “ (0[,)𝑏))) |
| 19 | | simplrl 777 |
. . . . . 6
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑎 ≤ 𝑏) → 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 20 | | simplrr 778 |
. . . . . 6
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑎 ≤ 𝑏) → 𝐵 = (◡𝐷 “ (0[,)𝑏))) |
| 21 | 18, 19, 20 | 3sstr4d 4039 |
. . . . 5
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑎 ≤ 𝑏) → 𝐴 ⊆ 𝐵) |
| 22 | 21 | orcd 874 |
. . . 4
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑎 ≤ 𝑏) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 23 | | simplll 775 |
. . . . . . . 8
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑏 ≤ 𝑎) → 𝑎 ∈ ℝ+) |
| 24 | 23 | rpred 13077 |
. . . . . . 7
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑏 ≤ 𝑎) → 𝑎 ∈ ℝ) |
| 25 | 7 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎) → 0 ∈
ℝ*) |
| 26 | | simpl 482 |
. . . . . . . . . 10
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎) → 𝑎 ∈ ℝ) |
| 27 | 26 | rexrd 11311 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎) → 𝑎 ∈ ℝ*) |
| 28 | 11 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎) → 0 ≤ 0) |
| 29 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎) → 𝑏 ≤ 𝑎) |
| 30 | | icossico 13457 |
. . . . . . . . 9
⊢ (((0
∈ ℝ* ∧ 𝑎 ∈ ℝ*) ∧ (0 ≤ 0
∧ 𝑏 ≤ 𝑎)) → (0[,)𝑏) ⊆ (0[,)𝑎)) |
| 31 | 25, 27, 28, 29, 30 | syl22anc 839 |
. . . . . . . 8
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎) → (0[,)𝑏) ⊆ (0[,)𝑎)) |
| 32 | | imass2 6120 |
. . . . . . . 8
⊢
((0[,)𝑏) ⊆
(0[,)𝑎) → (◡𝐷 “ (0[,)𝑏)) ⊆ (◡𝐷 “ (0[,)𝑎))) |
| 33 | 31, 32 | syl 17 |
. . . . . . 7
⊢ ((𝑎 ∈ ℝ ∧ 𝑏 ≤ 𝑎) → (◡𝐷 “ (0[,)𝑏)) ⊆ (◡𝐷 “ (0[,)𝑎))) |
| 34 | 24, 33 | sylancom 588 |
. . . . . 6
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑏 ≤ 𝑎) → (◡𝐷 “ (0[,)𝑏)) ⊆ (◡𝐷 “ (0[,)𝑎))) |
| 35 | | simplrr 778 |
. . . . . 6
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑏 ≤ 𝑎) → 𝐵 = (◡𝐷 “ (0[,)𝑏))) |
| 36 | | simplrl 777 |
. . . . . 6
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑏 ≤ 𝑎) → 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 37 | 34, 35, 36 | 3sstr4d 4039 |
. . . . 5
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑏 ≤ 𝑎) → 𝐵 ⊆ 𝐴) |
| 38 | 37 | olcd 875 |
. . . 4
⊢ ((((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) ∧ 𝑏 ≤ 𝑎) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 39 | 2, 4, 22, 38 | lecasei 11367 |
. . 3
⊢ (((𝑎 ∈ ℝ+
∧ 𝑏 ∈
ℝ+) ∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 40 | 39 | adantlll 718 |
. 2
⊢
(((((𝐷 ∈
(PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) ∧ 𝑏 ∈ ℝ+)
∧ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |
| 41 | | metust.1 |
. . . . . 6
⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| 42 | 41 | metustel 24563 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐴 ∈ 𝐹 ↔ ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎)))) |
| 43 | 42 | biimpa 476 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 44 | 43 | 3adant3 1133 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎))) |
| 45 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (0[,)𝑎) = (0[,)𝑏)) |
| 46 | 45 | imaeq2d 6078 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → (◡𝐷 “ (0[,)𝑎)) = (◡𝐷 “ (0[,)𝑏))) |
| 47 | 46 | cbvmptv 5255 |
. . . . . . . 8
⊢ (𝑎 ∈ ℝ+
↦ (◡𝐷 “ (0[,)𝑎))) = (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 48 | 47 | rneqi 5948 |
. . . . . . 7
⊢ ran
(𝑎 ∈
ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 49 | 41, 48 | eqtri 2765 |
. . . . . 6
⊢ 𝐹 = ran (𝑏 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑏))) |
| 50 | 49 | metustel 24563 |
. . . . 5
⊢ (𝐷 ∈ (PsMet‘𝑋) → (𝐵 ∈ 𝐹 ↔ ∃𝑏 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) |
| 51 | 50 | biimpa 476 |
. . . 4
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ 𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑏))) |
| 52 | 51 | 3adant2 1132 |
. . 3
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑏 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑏))) |
| 53 | | reeanv 3229 |
. . 3
⊢
(∃𝑎 ∈
ℝ+ ∃𝑏 ∈ ℝ+ (𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏))) ↔ (∃𝑎 ∈ ℝ+ 𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ ∃𝑏 ∈ ℝ+ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) |
| 54 | 44, 52, 53 | sylanbrc 583 |
. 2
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → ∃𝑎 ∈ ℝ+ ∃𝑏 ∈ ℝ+
(𝐴 = (◡𝐷 “ (0[,)𝑎)) ∧ 𝐵 = (◡𝐷 “ (0[,)𝑏)))) |
| 55 | 40, 54 | r19.29vva 3216 |
1
⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹 ∧ 𝐵 ∈ 𝐹) → (𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴)) |