| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metustss | Structured version Visualization version GIF version | ||
| Description: Range of the elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| metust.1 | ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| Ref | Expression |
|---|---|
| metustss | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | . . . 4 ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
| 2 | cnvimass 6037 | . . . . . . . . 9 ⊢ (◡𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷 | |
| 3 | psmetf 24210 | . . . . . . . . 9 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 4 | 2, 3 | fssdm 6675 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
| 5 | 4 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
| 6 | cnvexg 7864 | . . . . . . . . 9 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) | |
| 7 | imaexg 7853 | . . . . . . . . 9 ⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑎)) ∈ V) | |
| 8 | elpwg 4556 | . . . . . . . . 9 ⊢ ((◡𝐷 “ (0[,)𝑎)) ∈ V → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) |
| 10 | 9 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) |
| 11 | 5, 10 | mpbird 257 | . . . . . 6 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋)) |
| 12 | 11 | ralrimiva 3121 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ∀𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋)) |
| 13 | eqid 2729 | . . . . . 6 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
| 14 | 13 | rnmptss 7061 | . . . . 5 ⊢ (∀𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋)) |
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋)) |
| 16 | 1, 15 | eqsstrid 3976 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋)) |
| 17 | simpr 484 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝐹) | |
| 18 | 16, 17 | sseldd 3938 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝒫 (𝑋 × 𝑋)) |
| 19 | 18 | elpwid 4562 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 ⊆ wss 3905 𝒫 cpw 4553 ↦ cmpt 5176 × cxp 5621 ◡ccnv 5622 ran crn 5624 “ cima 5626 ‘cfv 6486 (class class class)co 7353 0cc0 11028 ℝ*cxr 11167 ℝ+crp 12911 [,)cico 13268 PsMetcpsmet 21263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-xr 11172 df-psmet 21271 |
| This theorem is referenced by: metustrel 24456 metustsym 24459 |
| Copyright terms: Public domain | W3C validator |