| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metustss | Structured version Visualization version GIF version | ||
| Description: Range of the elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| metust.1 | ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| Ref | Expression |
|---|---|
| metustss | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | . . . 4 ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
| 2 | cnvimass 6031 | . . . . . . . . 9 ⊢ (◡𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷 | |
| 3 | psmetf 24219 | . . . . . . . . 9 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 4 | 2, 3 | fssdm 6670 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
| 5 | 4 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
| 6 | cnvexg 7854 | . . . . . . . . 9 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) | |
| 7 | imaexg 7843 | . . . . . . . . 9 ⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑎)) ∈ V) | |
| 8 | elpwg 4553 | . . . . . . . . 9 ⊢ ((◡𝐷 “ (0[,)𝑎)) ∈ V → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) |
| 10 | 9 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) |
| 11 | 5, 10 | mpbird 257 | . . . . . 6 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋)) |
| 12 | 11 | ralrimiva 3124 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ∀𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋)) |
| 13 | eqid 2731 | . . . . . 6 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
| 14 | 13 | rnmptss 7056 | . . . . 5 ⊢ (∀𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋)) |
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋)) |
| 16 | 1, 15 | eqsstrid 3973 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋)) |
| 17 | simpr 484 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝐹) | |
| 18 | 16, 17 | sseldd 3935 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝒫 (𝑋 × 𝑋)) |
| 19 | 18 | elpwid 4559 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 𝒫 cpw 4550 ↦ cmpt 5172 × cxp 5614 ◡ccnv 5615 ran crn 5617 “ cima 5619 ‘cfv 6481 (class class class)co 7346 0cc0 11003 ℝ*cxr 11142 ℝ+crp 12887 [,)cico 13244 PsMetcpsmet 21273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-xr 11147 df-psmet 21281 |
| This theorem is referenced by: metustrel 24465 metustsym 24468 |
| Copyright terms: Public domain | W3C validator |