MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustss Structured version   Visualization version   GIF version

Theorem metustss 23707
Description: Range of the elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustss ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustss
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
2 cnvimass 5989 . . . . . . . . 9 (𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷
3 psmetf 23459 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
42, 3fssdm 6620 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))
54ad2antrr 723 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))
6 cnvexg 7771 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
7 imaexg 7762 . . . . . . . . 9 (𝐷 ∈ V → (𝐷 “ (0[,)𝑎)) ∈ V)
8 elpwg 4536 . . . . . . . . 9 ((𝐷 “ (0[,)𝑎)) ∈ V → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
96, 7, 83syl 18 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
109ad2antrr 723 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
115, 10mpbird 256 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋))
1211ralrimiva 3103 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ∀𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋))
13 eqid 2738 . . . . . 6 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
1413rnmptss 6996 . . . . 5 (∀𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋))
1512, 14syl 17 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋))
161, 15eqsstrid 3969 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋))
17 simpr 485 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴𝐹)
1816, 17sseldd 3922 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ∈ 𝒫 (𝑋 × 𝑋))
1918elpwid 4544 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  wss 3887  𝒫 cpw 4533  cmpt 5157   × cxp 5587  ccnv 5588  ran crn 5590  cima 5592  cfv 6433  (class class class)co 7275  0cc0 10871  *cxr 11008  +crp 12730  [,)cico 13081  PsMetcpsmet 20581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-xr 11013  df-psmet 20589
This theorem is referenced by:  metustrel  23708  metustsym  23711
  Copyright terms: Public domain W3C validator