Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metustss | Structured version Visualization version GIF version |
Description: Range of the elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
metust.1 | ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
Ref | Expression |
---|---|
metustss | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metust.1 | . . . 4 ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
2 | cnvimass 5989 | . . . . . . . . 9 ⊢ (◡𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷 | |
3 | psmetf 23459 | . . . . . . . . 9 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
4 | 2, 3 | fssdm 6620 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
5 | 4 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
6 | cnvexg 7771 | . . . . . . . . 9 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) | |
7 | imaexg 7762 | . . . . . . . . 9 ⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑎)) ∈ V) | |
8 | elpwg 4536 | . . . . . . . . 9 ⊢ ((◡𝐷 “ (0[,)𝑎)) ∈ V → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) | |
9 | 6, 7, 8 | 3syl 18 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) |
10 | 9 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) |
11 | 5, 10 | mpbird 256 | . . . . . 6 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋)) |
12 | 11 | ralrimiva 3103 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ∀𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋)) |
13 | eqid 2738 | . . . . . 6 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
14 | 13 | rnmptss 6996 | . . . . 5 ⊢ (∀𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋)) |
16 | 1, 15 | eqsstrid 3969 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋)) |
17 | simpr 485 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝐹) | |
18 | 16, 17 | sseldd 3922 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝒫 (𝑋 × 𝑋)) |
19 | 18 | elpwid 4544 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 ↦ cmpt 5157 × cxp 5587 ◡ccnv 5588 ran crn 5590 “ cima 5592 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℝ*cxr 11008 ℝ+crp 12730 [,)cico 13081 PsMetcpsmet 20581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-xr 11013 df-psmet 20589 |
This theorem is referenced by: metustrel 23708 metustsym 23711 |
Copyright terms: Public domain | W3C validator |