Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metustss | Structured version Visualization version GIF version |
Description: Range of the elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
Ref | Expression |
---|---|
metust.1 | ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
Ref | Expression |
---|---|
metustss | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metust.1 | . . . 4 ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
2 | cnvimass 5978 | . . . . . . . . 9 ⊢ (◡𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷 | |
3 | psmetf 23367 | . . . . . . . . 9 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
4 | 2, 3 | fssdm 6604 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
5 | 4 | ad2antrr 722 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
6 | cnvexg 7745 | . . . . . . . . 9 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) | |
7 | imaexg 7736 | . . . . . . . . 9 ⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑎)) ∈ V) | |
8 | elpwg 4533 | . . . . . . . . 9 ⊢ ((◡𝐷 “ (0[,)𝑎)) ∈ V → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) | |
9 | 6, 7, 8 | 3syl 18 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) |
10 | 9 | ad2antrr 722 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) |
11 | 5, 10 | mpbird 256 | . . . . . 6 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋)) |
12 | 11 | ralrimiva 3107 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ∀𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋)) |
13 | eqid 2738 | . . . . . 6 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
14 | 13 | rnmptss 6978 | . . . . 5 ⊢ (∀𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋)) |
16 | 1, 15 | eqsstrid 3965 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋)) |
17 | simpr 484 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝐹) | |
18 | 16, 17 | sseldd 3918 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝒫 (𝑋 × 𝑋)) |
19 | 18 | elpwid 4541 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ↦ cmpt 5153 × cxp 5578 ◡ccnv 5579 ran crn 5581 “ cima 5583 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℝ*cxr 10939 ℝ+crp 12659 [,)cico 13010 PsMetcpsmet 20494 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-xr 10944 df-psmet 20502 |
This theorem is referenced by: metustrel 23614 metustsym 23617 |
Copyright terms: Public domain | W3C validator |