MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustss Structured version   Visualization version   GIF version

Theorem metustss 24446
Description: Range of the elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustss ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustss
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
2 cnvimass 6056 . . . . . . . . 9 (𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷
3 psmetf 24201 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
42, 3fssdm 6710 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))
54ad2antrr 726 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))
6 cnvexg 7903 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
7 imaexg 7892 . . . . . . . . 9 (𝐷 ∈ V → (𝐷 “ (0[,)𝑎)) ∈ V)
8 elpwg 4569 . . . . . . . . 9 ((𝐷 “ (0[,)𝑎)) ∈ V → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
96, 7, 83syl 18 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
109ad2antrr 726 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
115, 10mpbird 257 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋))
1211ralrimiva 3126 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ∀𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋))
13 eqid 2730 . . . . . 6 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
1413rnmptss 7098 . . . . 5 (∀𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋))
1512, 14syl 17 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋))
161, 15eqsstrid 3988 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋))
17 simpr 484 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴𝐹)
1816, 17sseldd 3950 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ∈ 𝒫 (𝑋 × 𝑋))
1918elpwid 4575 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  wss 3917  𝒫 cpw 4566  cmpt 5191   × cxp 5639  ccnv 5640  ran crn 5642  cima 5644  cfv 6514  (class class class)co 7390  0cc0 11075  *cxr 11214  +crp 12958  [,)cico 13315  PsMetcpsmet 21255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-xr 11219  df-psmet 21263
This theorem is referenced by:  metustrel  24447  metustsym  24450
  Copyright terms: Public domain W3C validator