| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metustss | Structured version Visualization version GIF version | ||
| Description: Range of the elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.) |
| Ref | Expression |
|---|---|
| metust.1 | ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) |
| Ref | Expression |
|---|---|
| metustss | ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metust.1 | . . . 4 ⊢ 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
| 2 | cnvimass 6056 | . . . . . . . . 9 ⊢ (◡𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷 | |
| 3 | psmetf 24201 | . . . . . . . . 9 ⊢ (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 4 | 2, 3 | fssdm 6710 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
| 5 | 4 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)) |
| 6 | cnvexg 7903 | . . . . . . . . 9 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ◡𝐷 ∈ V) | |
| 7 | imaexg 7892 | . . . . . . . . 9 ⊢ (◡𝐷 ∈ V → (◡𝐷 “ (0[,)𝑎)) ∈ V) | |
| 8 | elpwg 4569 | . . . . . . . . 9 ⊢ ((◡𝐷 “ (0[,)𝑎)) ∈ V → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) | |
| 9 | 6, 7, 8 | 3syl 18 | . . . . . . . 8 ⊢ (𝐷 ∈ (PsMet‘𝑋) → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) |
| 10 | 9 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → ((◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (◡𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))) |
| 11 | 5, 10 | mpbird 257 | . . . . . 6 ⊢ (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) ∧ 𝑎 ∈ ℝ+) → (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋)) |
| 12 | 11 | ralrimiva 3126 | . . . . 5 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ∀𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋)) |
| 13 | eqid 2730 | . . . . . 6 ⊢ (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) | |
| 14 | 13 | rnmptss 7098 | . . . . 5 ⊢ (∀𝑎 ∈ ℝ+ (◡𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋)) |
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → ran (𝑎 ∈ ℝ+ ↦ (◡𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋)) |
| 16 | 1, 15 | eqsstrid 3988 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋)) |
| 17 | simpr 484 | . . 3 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝐹) | |
| 18 | 16, 17 | sseldd 3950 | . 2 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ∈ 𝒫 (𝑋 × 𝑋)) |
| 19 | 18 | elpwid 4575 | 1 ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝐹) → 𝐴 ⊆ (𝑋 × 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 ↦ cmpt 5191 × cxp 5639 ◡ccnv 5640 ran crn 5642 “ cima 5644 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℝ*cxr 11214 ℝ+crp 12958 [,)cico 13315 PsMetcpsmet 21255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-xr 11219 df-psmet 21263 |
| This theorem is referenced by: metustrel 24447 metustsym 24450 |
| Copyright terms: Public domain | W3C validator |