MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustss Structured version   Visualization version   GIF version

Theorem metustss 23156
Description: Range of the elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustss ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustss
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
2 cnvimass 5937 . . . . . . . . 9 (𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷
3 psmetf 22911 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
42, 3fssdm 6519 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))
54ad2antrr 725 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))
6 cnvexg 7621 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
7 imaexg 7612 . . . . . . . . 9 (𝐷 ∈ V → (𝐷 “ (0[,)𝑎)) ∈ V)
8 elpwg 4525 . . . . . . . . 9 ((𝐷 “ (0[,)𝑎)) ∈ V → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
96, 7, 83syl 18 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
109ad2antrr 725 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
115, 10mpbird 260 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋))
1211ralrimiva 3177 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ∀𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋))
13 eqid 2824 . . . . . 6 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
1413rnmptss 6875 . . . . 5 (∀𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋))
1512, 14syl 17 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋))
161, 15eqsstrid 4001 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋))
17 simpr 488 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴𝐹)
1816, 17sseldd 3954 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ∈ 𝒫 (𝑋 × 𝑋))
1918elpwid 4533 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wral 3133  Vcvv 3480  wss 3919  𝒫 cpw 4522  cmpt 5133   × cxp 5541  ccnv 5542  ran crn 5544  cima 5546  cfv 6344  (class class class)co 7146  0cc0 10531  *cxr 10668  +crp 12384  [,)cico 12735  PsMetcpsmet 20524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-cnex 10587  ax-resscn 10588
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-fv 6352  df-ov 7149  df-oprab 7150  df-mpo 7151  df-map 8400  df-xr 10673  df-psmet 20532
This theorem is referenced by:  metustrel  23157  metustsym  23160
  Copyright terms: Public domain W3C validator