MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metustss Structured version   Visualization version   GIF version

Theorem metustss 24439
Description: Range of the elements of the filter base generated by the metric 𝐷. (Contributed by Thierry Arnoux, 28-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metustss ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐴,𝑎   𝐹,𝑎

Proof of Theorem metustss
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
2 cnvimass 6053 . . . . . . . . 9 (𝐷 “ (0[,)𝑎)) ⊆ dom 𝐷
3 psmetf 24194 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
42, 3fssdm 6707 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))
54ad2antrr 726 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋))
6 cnvexg 7900 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
7 imaexg 7889 . . . . . . . . 9 (𝐷 ∈ V → (𝐷 “ (0[,)𝑎)) ∈ V)
8 elpwg 4566 . . . . . . . . 9 ((𝐷 “ (0[,)𝑎)) ∈ V → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
96, 7, 83syl 18 . . . . . . . 8 (𝐷 ∈ (PsMet‘𝑋) → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
109ad2antrr 726 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → ((𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) ↔ (𝐷 “ (0[,)𝑎)) ⊆ (𝑋 × 𝑋)))
115, 10mpbird 257 . . . . . 6 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) ∧ 𝑎 ∈ ℝ+) → (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋))
1211ralrimiva 3125 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ∀𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋))
13 eqid 2729 . . . . . 6 (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) = (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
1413rnmptss 7095 . . . . 5 (∀𝑎 ∈ ℝ+ (𝐷 “ (0[,)𝑎)) ∈ 𝒫 (𝑋 × 𝑋) → ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋))
1512, 14syl 17 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎))) ⊆ 𝒫 (𝑋 × 𝑋))
161, 15eqsstrid 3985 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐹 ⊆ 𝒫 (𝑋 × 𝑋))
17 simpr 484 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴𝐹)
1816, 17sseldd 3947 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ∈ 𝒫 (𝑋 × 𝑋))
1918elpwid 4572 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝑋 × 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  wss 3914  𝒫 cpw 4563  cmpt 5188   × cxp 5636  ccnv 5637  ran crn 5639  cima 5641  cfv 6511  (class class class)co 7387  0cc0 11068  *cxr 11207  +crp 12951  [,)cico 13308  PsMetcpsmet 21248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-xr 11212  df-psmet 21256
This theorem is referenced by:  metustrel  24440  metustsym  24443
  Copyright terms: Public domain W3C validator