MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmgsum Structured version   Visualization version   GIF version

Theorem frlmgsum 21688
Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 5-Jul-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmgsum.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmgsum.b 𝐵 = (Base‘𝑌)
frlmgsum.z 0 = (0g𝑌)
frlmgsum.i (𝜑𝐼𝑉)
frlmgsum.j (𝜑𝐽𝑊)
frlmgsum.r (𝜑𝑅 ∈ Ring)
frlmgsum.f ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ 𝐵)
frlmgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
frlmgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem frlmgsum
StepHypRef Expression
1 frlmgsum.r . . . 4 (𝜑𝑅 ∈ Ring)
2 frlmgsum.i . . . 4 (𝜑𝐼𝑉)
3 frlmgsum.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
4 frlmgsum.b . . . . 5 𝐵 = (Base‘𝑌)
53, 4frlmpws 21666 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
61, 2, 5syl2anc 584 . . 3 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
76oveq1d 7405 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
8 eqid 2730 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
9 eqid 2730 . . 3 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼))
10 eqid 2730 . . 3 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
11 ovexd 7425 . . 3 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ V)
12 frlmgsum.j . . 3 (𝜑𝐽𝑊)
13 eqid 2730 . . . . . 6 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
143, 4, 13frlmlss 21667 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
151, 2, 14syl2anc 584 . . . 4 (𝜑𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
168, 13lssss 20849 . . . 4 (𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
1715, 16syl 17 . . 3 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
18 frlmgsum.f . . . 4 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ 𝐵)
1918fmpttd 7090 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽𝐵)
20 rlmlmod 21117 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
211, 20syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
22 eqid 2730 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
2322pwslmod 20883 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
2421, 2, 23syl2anc 584 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
25 eqid 2730 . . . . 5 (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))
2625, 13lss0cl 20860 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵)
2724, 15, 26syl2anc 584 . . 3 (𝜑 → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵)
28 lmodcmn 20823 . . . . . . 7 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ CMnd)
2921, 28syl 17 . . . . . 6 (𝜑 → (ringLMod‘𝑅) ∈ CMnd)
30 cmnmnd 19734 . . . . . 6 ((ringLMod‘𝑅) ∈ CMnd → (ringLMod‘𝑅) ∈ Mnd)
3129, 30syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ Mnd)
3222pwsmnd 18706 . . . . 5 (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd)
3331, 2, 32syl2anc 584 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd)
348, 9, 25mndlrid 18687 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd ∧ 𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) → (((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥))
3533, 34sylan 580 . . 3 ((𝜑𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) → (((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥))
368, 9, 10, 11, 12, 17, 19, 27, 35gsumress 18616 . 2 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
37 rlmbas 21107 . . . 4 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
38 eqid 2730 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
393, 38, 4frlmbasf 21676 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝐼𝑈) ∈ 𝐵) → (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
402, 18, 39syl2an2r 685 . . . . . . 7 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
4140fvmptelcdm 7088 . . . . . 6 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈 ∈ (Base‘𝑅))
4241an32s 652 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈 ∈ (Base‘𝑅))
4342anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈 ∈ (Base‘𝑅))
44 frlmgsum.w . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
45 frlmgsum.z . . . . . 6 0 = (0g𝑌)
466fveq2d 6865 . . . . . . 7 (𝜑 → (0g𝑌) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
4713lsssubg 20870 . . . . . . . . 9 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
4824, 15, 47syl2anc 584 . . . . . . . 8 (𝜑𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
4910, 25subg0 19071 . . . . . . . 8 (𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5048, 49syl 17 . . . . . . 7 (𝜑 → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5146, 50eqtr4d 2768 . . . . . 6 (𝜑 → (0g𝑌) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5245, 51eqtrid 2777 . . . . 5 (𝜑0 = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5344, 52breqtrd 5136 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5422, 37, 25, 2, 12, 29, 43, 53pwsgsum 19919 . . 3 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈))))
5512mptexd 7201 . . . . 5 (𝜑 → (𝑦𝐽𝑈) ∈ V)
56 fvexd 6876 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ V)
5737a1i 11 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
58 rlmplusg 21108 . . . . . 6 (+g𝑅) = (+g‘(ringLMod‘𝑅))
5958a1i 11 . . . . 5 (𝜑 → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
6055, 1, 56, 57, 59gsumpropd 18612 . . . 4 (𝜑 → (𝑅 Σg (𝑦𝐽𝑈)) = ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈)))
6160mpteq2dv 5204 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈))))
6254, 61eqtr4d 2768 . 2 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
637, 36, 623eqtr2d 2771 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390   finSupp cfsupp 9319  Basecbs 17186  s cress 17207  +gcplusg 17227  0gc0g 17409   Σg cgsu 17410  s cpws 17416  Mndcmnd 18668  SubGrpcsubg 19059  CMndccmn 19717  Ringcrg 20149  LModclmod 20773  LSubSpclss 20844  ringLModcrglmod 21086   freeLMod cfrlm 21662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663
This theorem is referenced by:  uvcresum  21709  matgsum  22331  matunitlindflem1  37617  matunitlindflem2  37618  aacllem  49794
  Copyright terms: Public domain W3C validator