MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmgsum Structured version   Visualization version   GIF version

Theorem frlmgsum 21681
Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 5-Jul-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmgsum.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmgsum.b 𝐵 = (Base‘𝑌)
frlmgsum.z 0 = (0g𝑌)
frlmgsum.i (𝜑𝐼𝑉)
frlmgsum.j (𝜑𝐽𝑊)
frlmgsum.r (𝜑𝑅 ∈ Ring)
frlmgsum.f ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ 𝐵)
frlmgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
frlmgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem frlmgsum
StepHypRef Expression
1 frlmgsum.r . . . 4 (𝜑𝑅 ∈ Ring)
2 frlmgsum.i . . . 4 (𝜑𝐼𝑉)
3 frlmgsum.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
4 frlmgsum.b . . . . 5 𝐵 = (Base‘𝑌)
53, 4frlmpws 21659 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
61, 2, 5syl2anc 584 . . 3 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
76oveq1d 7402 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
8 eqid 2729 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
9 eqid 2729 . . 3 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼))
10 eqid 2729 . . 3 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
11 ovexd 7422 . . 3 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ V)
12 frlmgsum.j . . 3 (𝜑𝐽𝑊)
13 eqid 2729 . . . . . 6 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
143, 4, 13frlmlss 21660 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
151, 2, 14syl2anc 584 . . . 4 (𝜑𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
168, 13lssss 20842 . . . 4 (𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
1715, 16syl 17 . . 3 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
18 frlmgsum.f . . . 4 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ 𝐵)
1918fmpttd 7087 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽𝐵)
20 rlmlmod 21110 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
211, 20syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
22 eqid 2729 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
2322pwslmod 20876 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
2421, 2, 23syl2anc 584 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
25 eqid 2729 . . . . 5 (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))
2625, 13lss0cl 20853 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵)
2724, 15, 26syl2anc 584 . . 3 (𝜑 → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵)
28 lmodcmn 20816 . . . . . . 7 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ CMnd)
2921, 28syl 17 . . . . . 6 (𝜑 → (ringLMod‘𝑅) ∈ CMnd)
30 cmnmnd 19727 . . . . . 6 ((ringLMod‘𝑅) ∈ CMnd → (ringLMod‘𝑅) ∈ Mnd)
3129, 30syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ Mnd)
3222pwsmnd 18699 . . . . 5 (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd)
3331, 2, 32syl2anc 584 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd)
348, 9, 25mndlrid 18680 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd ∧ 𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) → (((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥))
3533, 34sylan 580 . . 3 ((𝜑𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) → (((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥))
368, 9, 10, 11, 12, 17, 19, 27, 35gsumress 18609 . 2 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
37 rlmbas 21100 . . . 4 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
38 eqid 2729 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
393, 38, 4frlmbasf 21669 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝐼𝑈) ∈ 𝐵) → (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
402, 18, 39syl2an2r 685 . . . . . . 7 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
4140fvmptelcdm 7085 . . . . . 6 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈 ∈ (Base‘𝑅))
4241an32s 652 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈 ∈ (Base‘𝑅))
4342anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈 ∈ (Base‘𝑅))
44 frlmgsum.w . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
45 frlmgsum.z . . . . . 6 0 = (0g𝑌)
466fveq2d 6862 . . . . . . 7 (𝜑 → (0g𝑌) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
4713lsssubg 20863 . . . . . . . . 9 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
4824, 15, 47syl2anc 584 . . . . . . . 8 (𝜑𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
4910, 25subg0 19064 . . . . . . . 8 (𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5048, 49syl 17 . . . . . . 7 (𝜑 → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5146, 50eqtr4d 2767 . . . . . 6 (𝜑 → (0g𝑌) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5245, 51eqtrid 2776 . . . . 5 (𝜑0 = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5344, 52breqtrd 5133 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5422, 37, 25, 2, 12, 29, 43, 53pwsgsum 19912 . . 3 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈))))
5512mptexd 7198 . . . . 5 (𝜑 → (𝑦𝐽𝑈) ∈ V)
56 fvexd 6873 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ V)
5737a1i 11 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
58 rlmplusg 21101 . . . . . 6 (+g𝑅) = (+g‘(ringLMod‘𝑅))
5958a1i 11 . . . . 5 (𝜑 → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
6055, 1, 56, 57, 59gsumpropd 18605 . . . 4 (𝜑 → (𝑅 Σg (𝑦𝐽𝑈)) = ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈)))
6160mpteq2dv 5201 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈))))
6254, 61eqtr4d 2767 . 2 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
637, 36, 623eqtr2d 2770 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387   finSupp cfsupp 9312  Basecbs 17179  s cress 17200  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403  s cpws 17409  Mndcmnd 18661  SubGrpcsubg 19052  CMndccmn 19710  Ringcrg 20142  LModclmod 20766  LSubSpclss 20837  ringLModcrglmod 21079   freeLMod cfrlm 21655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656
This theorem is referenced by:  uvcresum  21702  matgsum  22324  matunitlindflem1  37610  matunitlindflem2  37611  aacllem  49790
  Copyright terms: Public domain W3C validator