MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmgsum Structured version   Visualization version   GIF version

Theorem frlmgsum 21737
Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 5-Jul-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmgsum.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmgsum.b 𝐵 = (Base‘𝑌)
frlmgsum.z 0 = (0g𝑌)
frlmgsum.i (𝜑𝐼𝑉)
frlmgsum.j (𝜑𝐽𝑊)
frlmgsum.r (𝜑𝑅 ∈ Ring)
frlmgsum.f ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ 𝐵)
frlmgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
frlmgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem frlmgsum
StepHypRef Expression
1 frlmgsum.r . . . 4 (𝜑𝑅 ∈ Ring)
2 frlmgsum.i . . . 4 (𝜑𝐼𝑉)
3 frlmgsum.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
4 frlmgsum.b . . . . 5 𝐵 = (Base‘𝑌)
53, 4frlmpws 21715 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
61, 2, 5syl2anc 584 . . 3 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
76oveq1d 7425 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
8 eqid 2736 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
9 eqid 2736 . . 3 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼))
10 eqid 2736 . . 3 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
11 ovexd 7445 . . 3 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ V)
12 frlmgsum.j . . 3 (𝜑𝐽𝑊)
13 eqid 2736 . . . . . 6 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
143, 4, 13frlmlss 21716 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
151, 2, 14syl2anc 584 . . . 4 (𝜑𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
168, 13lssss 20898 . . . 4 (𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
1715, 16syl 17 . . 3 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
18 frlmgsum.f . . . 4 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ 𝐵)
1918fmpttd 7110 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽𝐵)
20 rlmlmod 21166 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
211, 20syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
22 eqid 2736 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
2322pwslmod 20932 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
2421, 2, 23syl2anc 584 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
25 eqid 2736 . . . . 5 (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))
2625, 13lss0cl 20909 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵)
2724, 15, 26syl2anc 584 . . 3 (𝜑 → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵)
28 lmodcmn 20872 . . . . . . 7 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ CMnd)
2921, 28syl 17 . . . . . 6 (𝜑 → (ringLMod‘𝑅) ∈ CMnd)
30 cmnmnd 19783 . . . . . 6 ((ringLMod‘𝑅) ∈ CMnd → (ringLMod‘𝑅) ∈ Mnd)
3129, 30syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ Mnd)
3222pwsmnd 18755 . . . . 5 (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd)
3331, 2, 32syl2anc 584 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd)
348, 9, 25mndlrid 18736 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd ∧ 𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) → (((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥))
3533, 34sylan 580 . . 3 ((𝜑𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) → (((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥))
368, 9, 10, 11, 12, 17, 19, 27, 35gsumress 18665 . 2 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
37 rlmbas 21156 . . . 4 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
38 eqid 2736 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
393, 38, 4frlmbasf 21725 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝐼𝑈) ∈ 𝐵) → (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
402, 18, 39syl2an2r 685 . . . . . . 7 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
4140fvmptelcdm 7108 . . . . . 6 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈 ∈ (Base‘𝑅))
4241an32s 652 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈 ∈ (Base‘𝑅))
4342anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈 ∈ (Base‘𝑅))
44 frlmgsum.w . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
45 frlmgsum.z . . . . . 6 0 = (0g𝑌)
466fveq2d 6885 . . . . . . 7 (𝜑 → (0g𝑌) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
4713lsssubg 20919 . . . . . . . . 9 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
4824, 15, 47syl2anc 584 . . . . . . . 8 (𝜑𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
4910, 25subg0 19120 . . . . . . . 8 (𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5048, 49syl 17 . . . . . . 7 (𝜑 → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5146, 50eqtr4d 2774 . . . . . 6 (𝜑 → (0g𝑌) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5245, 51eqtrid 2783 . . . . 5 (𝜑0 = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5344, 52breqtrd 5150 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5422, 37, 25, 2, 12, 29, 43, 53pwsgsum 19968 . . 3 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈))))
5512mptexd 7221 . . . . 5 (𝜑 → (𝑦𝐽𝑈) ∈ V)
56 fvexd 6896 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ V)
5737a1i 11 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
58 rlmplusg 21157 . . . . . 6 (+g𝑅) = (+g‘(ringLMod‘𝑅))
5958a1i 11 . . . . 5 (𝜑 → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
6055, 1, 56, 57, 59gsumpropd 18661 . . . 4 (𝜑 → (𝑅 Σg (𝑦𝐽𝑈)) = ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈)))
6160mpteq2dv 5220 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈))))
6254, 61eqtr4d 2774 . 2 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
637, 36, 623eqtr2d 2777 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  wss 3931   class class class wbr 5124  cmpt 5206  wf 6532  cfv 6536  (class class class)co 7410   finSupp cfsupp 9378  Basecbs 17233  s cress 17256  +gcplusg 17276  0gc0g 17458   Σg cgsu 17459  s cpws 17465  Mndcmnd 18717  SubGrpcsubg 19108  CMndccmn 19766  Ringcrg 20198  LModclmod 20822  LSubSpclss 20893  ringLModcrglmod 21135   freeLMod cfrlm 21711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-sup 9459  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-hom 17300  df-cco 17301  df-0g 17460  df-gsum 17461  df-prds 17466  df-pws 17468  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-subrg 20535  df-lmod 20824  df-lss 20894  df-sra 21136  df-rgmod 21137  df-dsmm 21697  df-frlm 21712
This theorem is referenced by:  uvcresum  21758  matgsum  22380  matunitlindflem1  37645  matunitlindflem2  37646  aacllem  49632
  Copyright terms: Public domain W3C validator