Proof of Theorem frlmgsum
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | frlmgsum.r | . . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 2 |  | frlmgsum.i | . . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) | 
| 3 |  | frlmgsum.y | . . . . 5
⊢ 𝑌 = (𝑅 freeLMod 𝐼) | 
| 4 |  | frlmgsum.b | . . . . 5
⊢ 𝐵 = (Base‘𝑌) | 
| 5 | 3, 4 | frlmpws 21771 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) | 
| 6 | 1, 2, 5 | syl2anc 584 | . . 3
⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) | 
| 7 | 6 | oveq1d 7447 | . 2
⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg
(𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))) | 
| 8 |  | eqid 2736 | . . 3
⊢
(Base‘((ringLMod‘𝑅) ↑s 𝐼)) =
(Base‘((ringLMod‘𝑅) ↑s 𝐼)) | 
| 9 |  | eqid 2736 | . . 3
⊢
(+g‘((ringLMod‘𝑅) ↑s 𝐼)) =
(+g‘((ringLMod‘𝑅) ↑s 𝐼)) | 
| 10 |  | eqid 2736 | . . 3
⊢
(((ringLMod‘𝑅)
↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) | 
| 11 |  | ovexd 7467 | . . 3
⊢ (𝜑 → ((ringLMod‘𝑅) ↑s
𝐼) ∈
V) | 
| 12 |  | frlmgsum.j | . . 3
⊢ (𝜑 → 𝐽 ∈ 𝑊) | 
| 13 |  | eqid 2736 | . . . . . 6
⊢
(LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) =
(LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) | 
| 14 | 3, 4, 13 | frlmlss 21772 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝐼))) | 
| 15 | 1, 2, 14 | syl2anc 584 | . . . 4
⊢ (𝜑 → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝐼))) | 
| 16 | 8, 13 | lssss 20935 | . . . 4
⊢ (𝐵 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s
𝐼))) | 
| 17 | 15, 16 | syl 17 | . . 3
⊢ (𝜑 → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s
𝐼))) | 
| 18 |  | frlmgsum.f | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵) | 
| 19 | 18 | fmpttd 7134 | . . 3
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)):𝐽⟶𝐵) | 
| 20 |  | rlmlmod 21211 | . . . . . 6
⊢ (𝑅 ∈ Ring →
(ringLMod‘𝑅) ∈
LMod) | 
| 21 | 1, 20 | syl 17 | . . . . 5
⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) | 
| 22 |  | eqid 2736 | . . . . . 6
⊢
((ringLMod‘𝑅)
↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) | 
| 23 | 22 | pwslmod 20969 | . . . . 5
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ 𝐼 ∈
𝑉) →
((ringLMod‘𝑅)
↑s 𝐼) ∈ LMod) | 
| 24 | 21, 2, 23 | syl2anc 584 | . . . 4
⊢ (𝜑 → ((ringLMod‘𝑅) ↑s
𝐼) ∈
LMod) | 
| 25 |  | eqid 2736 | . . . . 5
⊢
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) =
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) | 
| 26 | 25, 13 | lss0cl 20946 | . . . 4
⊢
((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) →
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵) | 
| 27 | 24, 15, 26 | syl2anc 584 | . . 3
⊢ (𝜑 →
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵) | 
| 28 |  | lmodcmn 20909 | . . . . . . 7
⊢
((ringLMod‘𝑅)
∈ LMod → (ringLMod‘𝑅) ∈ CMnd) | 
| 29 | 21, 28 | syl 17 | . . . . . 6
⊢ (𝜑 → (ringLMod‘𝑅) ∈ CMnd) | 
| 30 |  | cmnmnd 19816 | . . . . . 6
⊢
((ringLMod‘𝑅)
∈ CMnd → (ringLMod‘𝑅) ∈ Mnd) | 
| 31 | 29, 30 | syl 17 | . . . . 5
⊢ (𝜑 → (ringLMod‘𝑅) ∈ Mnd) | 
| 32 | 22 | pwsmnd 18786 | . . . . 5
⊢
(((ringLMod‘𝑅)
∈ Mnd ∧ 𝐼 ∈
𝑉) →
((ringLMod‘𝑅)
↑s 𝐼) ∈ Mnd) | 
| 33 | 31, 2, 32 | syl2anc 584 | . . . 4
⊢ (𝜑 → ((ringLMod‘𝑅) ↑s
𝐼) ∈
Mnd) | 
| 34 | 8, 9, 25 | mndlrid 18767 | . . . 4
⊢
((((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd ∧ 𝑥 ∈
(Base‘((ringLMod‘𝑅) ↑s 𝐼))) →
(((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥)) | 
| 35 | 33, 34 | sylan 580 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝐼))) →
(((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥)) | 
| 36 | 8, 9, 10, 11, 12, 17, 19, 27, 35 | gsumress 18696 | . 2
⊢ (𝜑 → (((ringLMod‘𝑅) ↑s
𝐼)
Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg
(𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))) | 
| 37 |  | rlmbas 21201 | . . . 4
⊢
(Base‘𝑅) =
(Base‘(ringLMod‘𝑅)) | 
| 38 |  | eqid 2736 | . . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 39 | 3, 38, 4 | frlmbasf 21781 | . . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵) → (𝑥 ∈ 𝐼 ↦ 𝑈):𝐼⟶(Base‘𝑅)) | 
| 40 | 2, 18, 39 | syl2an2r 685 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈):𝐼⟶(Base‘𝑅)) | 
| 41 | 40 | fvmptelcdm 7132 | . . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝑈 ∈ (Base‘𝑅)) | 
| 42 | 41 | an32s 652 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑈 ∈ (Base‘𝑅)) | 
| 43 | 42 | anasss 466 | . . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ (Base‘𝑅)) | 
| 44 |  | frlmgsum.w | . . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) | 
| 45 |  | frlmgsum.z | . . . . . 6
⊢  0 =
(0g‘𝑌) | 
| 46 | 6 | fveq2d 6909 | . . . . . . 7
⊢ (𝜑 → (0g‘𝑌) =
(0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) | 
| 47 | 13 | lsssubg 20956 | . . . . . . . . 9
⊢
((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s
𝐼))) | 
| 48 | 24, 15, 47 | syl2anc 584 | . . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s
𝐼))) | 
| 49 | 10, 25 | subg0 19151 | . . . . . . . 8
⊢ (𝐵 ∈
(SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) →
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) =
(0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) | 
| 50 | 48, 49 | syl 17 | . . . . . . 7
⊢ (𝜑 →
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) =
(0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) | 
| 51 | 46, 50 | eqtr4d 2779 | . . . . . 6
⊢ (𝜑 → (0g‘𝑌) =
(0g‘((ringLMod‘𝑅) ↑s 𝐼))) | 
| 52 | 45, 51 | eqtrid 2788 | . . . . 5
⊢ (𝜑 → 0 =
(0g‘((ringLMod‘𝑅) ↑s 𝐼))) | 
| 53 | 44, 52 | breqtrd 5168 | . . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp
(0g‘((ringLMod‘𝑅) ↑s 𝐼))) | 
| 54 | 22, 37, 25, 2, 12, 29, 43, 53 | pwsgsum 20001 | . . 3
⊢ (𝜑 → (((ringLMod‘𝑅) ↑s
𝐼)
Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | 
| 55 | 12 | mptexd 7245 | . . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ 𝑈) ∈ V) | 
| 56 |  | fvexd 6920 | . . . . 5
⊢ (𝜑 → (ringLMod‘𝑅) ∈ V) | 
| 57 | 37 | a1i 11 | . . . . 5
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(ringLMod‘𝑅))) | 
| 58 |  | rlmplusg 21202 | . . . . . 6
⊢
(+g‘𝑅) =
(+g‘(ringLMod‘𝑅)) | 
| 59 | 58 | a1i 11 | . . . . 5
⊢ (𝜑 → (+g‘𝑅) =
(+g‘(ringLMod‘𝑅))) | 
| 60 | 55, 1, 56, 57, 59 | gsumpropd 18692 | . . . 4
⊢ (𝜑 → (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)) = ((ringLMod‘𝑅) Σg (𝑦 ∈ 𝐽 ↦ 𝑈))) | 
| 61 | 60 | mpteq2dv 5243 | . . 3
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | 
| 62 | 54, 61 | eqtr4d 2779 | . 2
⊢ (𝜑 → (((ringLMod‘𝑅) ↑s
𝐼)
Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) | 
| 63 | 7, 36, 62 | 3eqtr2d 2782 | 1
⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |