Proof of Theorem frlmgsum
Step | Hyp | Ref
| Expression |
1 | | frlmgsum.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
2 | | frlmgsum.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
3 | | frlmgsum.y |
. . . . 5
⊢ 𝑌 = (𝑅 freeLMod 𝐼) |
4 | | frlmgsum.b |
. . . . 5
⊢ 𝐵 = (Base‘𝑌) |
5 | 3, 4 | frlmpws 20957 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
6 | 1, 2, 5 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)) |
7 | 6 | oveq1d 7290 |
. 2
⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg
(𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))) |
8 | | eqid 2738 |
. . 3
⊢
(Base‘((ringLMod‘𝑅) ↑s 𝐼)) =
(Base‘((ringLMod‘𝑅) ↑s 𝐼)) |
9 | | eqid 2738 |
. . 3
⊢
(+g‘((ringLMod‘𝑅) ↑s 𝐼)) =
(+g‘((ringLMod‘𝑅) ↑s 𝐼)) |
10 | | eqid 2738 |
. . 3
⊢
(((ringLMod‘𝑅)
↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) |
11 | | ovexd 7310 |
. . 3
⊢ (𝜑 → ((ringLMod‘𝑅) ↑s
𝐼) ∈
V) |
12 | | frlmgsum.j |
. . 3
⊢ (𝜑 → 𝐽 ∈ 𝑊) |
13 | | eqid 2738 |
. . . . . 6
⊢
(LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) =
(LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) |
14 | 3, 4, 13 | frlmlss 20958 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝐼))) |
15 | 1, 2, 14 | syl2anc 584 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s
𝐼))) |
16 | 8, 13 | lssss 20198 |
. . . 4
⊢ (𝐵 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s
𝐼))) |
17 | 15, 16 | syl 17 |
. . 3
⊢ (𝜑 → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s
𝐼))) |
18 | | frlmgsum.f |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵) |
19 | 18 | fmpttd 6989 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)):𝐽⟶𝐵) |
20 | | rlmlmod 20475 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(ringLMod‘𝑅) ∈
LMod) |
21 | 1, 20 | syl 17 |
. . . . 5
⊢ (𝜑 → (ringLMod‘𝑅) ∈ LMod) |
22 | | eqid 2738 |
. . . . . 6
⊢
((ringLMod‘𝑅)
↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼) |
23 | 22 | pwslmod 20232 |
. . . . 5
⊢
(((ringLMod‘𝑅)
∈ LMod ∧ 𝐼 ∈
𝑉) →
((ringLMod‘𝑅)
↑s 𝐼) ∈ LMod) |
24 | 21, 2, 23 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((ringLMod‘𝑅) ↑s
𝐼) ∈
LMod) |
25 | | eqid 2738 |
. . . . 5
⊢
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) =
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) |
26 | 25, 13 | lss0cl 20208 |
. . . 4
⊢
((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) →
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵) |
27 | 24, 15, 26 | syl2anc 584 |
. . 3
⊢ (𝜑 →
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵) |
28 | | lmodcmn 20171 |
. . . . . . 7
⊢
((ringLMod‘𝑅)
∈ LMod → (ringLMod‘𝑅) ∈ CMnd) |
29 | 21, 28 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ringLMod‘𝑅) ∈ CMnd) |
30 | | cmnmnd 19402 |
. . . . . 6
⊢
((ringLMod‘𝑅)
∈ CMnd → (ringLMod‘𝑅) ∈ Mnd) |
31 | 29, 30 | syl 17 |
. . . . 5
⊢ (𝜑 → (ringLMod‘𝑅) ∈ Mnd) |
32 | 22 | pwsmnd 18420 |
. . . . 5
⊢
(((ringLMod‘𝑅)
∈ Mnd ∧ 𝐼 ∈
𝑉) →
((ringLMod‘𝑅)
↑s 𝐼) ∈ Mnd) |
33 | 31, 2, 32 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((ringLMod‘𝑅) ↑s
𝐼) ∈
Mnd) |
34 | 8, 9, 25 | mndlrid 18404 |
. . . 4
⊢
((((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd ∧ 𝑥 ∈
(Base‘((ringLMod‘𝑅) ↑s 𝐼))) →
(((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥)) |
35 | 33, 34 | sylan 580 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s
𝐼))) →
(((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥)) |
36 | 8, 9, 10, 11, 12, 17, 19, 27, 35 | gsumress 18366 |
. 2
⊢ (𝜑 → (((ringLMod‘𝑅) ↑s
𝐼)
Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg
(𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))) |
37 | | rlmbas 20465 |
. . . 4
⊢
(Base‘𝑅) =
(Base‘(ringLMod‘𝑅)) |
38 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
39 | 3, 38, 4 | frlmbasf 20967 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵) → (𝑥 ∈ 𝐼 ↦ 𝑈):𝐼⟶(Base‘𝑅)) |
40 | 2, 18, 39 | syl2an2r 682 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝐼 ↦ 𝑈):𝐼⟶(Base‘𝑅)) |
41 | 40 | fvmptelrn 6987 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐽) ∧ 𝑥 ∈ 𝐼) → 𝑈 ∈ (Base‘𝑅)) |
42 | 41 | an32s 649 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐼) ∧ 𝑦 ∈ 𝐽) → 𝑈 ∈ (Base‘𝑅)) |
43 | 42 | anasss 467 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ (Base‘𝑅)) |
44 | | frlmgsum.w |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) |
45 | | frlmgsum.z |
. . . . . 6
⊢ 0 =
(0g‘𝑌) |
46 | 6 | fveq2d 6778 |
. . . . . . 7
⊢ (𝜑 → (0g‘𝑌) =
(0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
47 | 13 | lsssubg 20219 |
. . . . . . . . 9
⊢
((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈
(LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s
𝐼))) |
48 | 24, 15, 47 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s
𝐼))) |
49 | 10, 25 | subg0 18761 |
. . . . . . . 8
⊢ (𝐵 ∈
(SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) →
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) =
(0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
50 | 48, 49 | syl 17 |
. . . . . . 7
⊢ (𝜑 →
(0g‘((ringLMod‘𝑅) ↑s 𝐼)) =
(0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))) |
51 | 46, 50 | eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → (0g‘𝑌) =
(0g‘((ringLMod‘𝑅) ↑s 𝐼))) |
52 | 45, 51 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → 0 =
(0g‘((ringLMod‘𝑅) ↑s 𝐼))) |
53 | 44, 52 | breqtrd 5100 |
. . . 4
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp
(0g‘((ringLMod‘𝑅) ↑s 𝐼))) |
54 | 22, 37, 25, 2, 12, 29, 43, 53 | pwsgsum 19583 |
. . 3
⊢ (𝜑 → (((ringLMod‘𝑅) ↑s
𝐼)
Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
55 | 12 | mptexd 7100 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ 𝑈) ∈ V) |
56 | | fvexd 6789 |
. . . . 5
⊢ (𝜑 → (ringLMod‘𝑅) ∈ V) |
57 | 37 | a1i 11 |
. . . . 5
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(ringLMod‘𝑅))) |
58 | | rlmplusg 20466 |
. . . . . 6
⊢
(+g‘𝑅) =
(+g‘(ringLMod‘𝑅)) |
59 | 58 | a1i 11 |
. . . . 5
⊢ (𝜑 → (+g‘𝑅) =
(+g‘(ringLMod‘𝑅))) |
60 | 55, 1, 56, 57, 59 | gsumpropd 18362 |
. . . 4
⊢ (𝜑 → (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)) = ((ringLMod‘𝑅) Σg (𝑦 ∈ 𝐽 ↦ 𝑈))) |
61 | 60 | mpteq2dv 5176 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
62 | 54, 61 | eqtr4d 2781 |
. 2
⊢ (𝜑 → (((ringLMod‘𝑅) ↑s
𝐼)
Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
63 | 7, 36, 62 | 3eqtr2d 2784 |
1
⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |