MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmgsum Structured version   Visualization version   GIF version

Theorem frlmgsum 21815
Description: Finite commutative sums in a free module are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 5-Jul-2015.) (Revised by AV, 23-Jun-2019.)
Hypotheses
Ref Expression
frlmgsum.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmgsum.b 𝐵 = (Base‘𝑌)
frlmgsum.z 0 = (0g𝑌)
frlmgsum.i (𝜑𝐼𝑉)
frlmgsum.j (𝜑𝐽𝑊)
frlmgsum.r (𝜑𝑅 ∈ Ring)
frlmgsum.f ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ 𝐵)
frlmgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
frlmgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem frlmgsum
StepHypRef Expression
1 frlmgsum.r . . . 4 (𝜑𝑅 ∈ Ring)
2 frlmgsum.i . . . 4 (𝜑𝐼𝑉)
3 frlmgsum.y . . . . 5 𝑌 = (𝑅 freeLMod 𝐼)
4 frlmgsum.b . . . . 5 𝐵 = (Base‘𝑌)
53, 4frlmpws 21793 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
61, 2, 5syl2anc 583 . . 3 (𝜑𝑌 = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵))
76oveq1d 7463 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
8 eqid 2740 . . 3 (Base‘((ringLMod‘𝑅) ↑s 𝐼)) = (Base‘((ringLMod‘𝑅) ↑s 𝐼))
9 eqid 2740 . . 3 (+g‘((ringLMod‘𝑅) ↑s 𝐼)) = (+g‘((ringLMod‘𝑅) ↑s 𝐼))
10 eqid 2740 . . 3 (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) = (((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)
11 ovexd 7483 . . 3 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ V)
12 frlmgsum.j . . 3 (𝜑𝐽𝑊)
13 eqid 2740 . . . . . 6 (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) = (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))
143, 4, 13frlmlss 21794 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
151, 2, 14syl2anc 583 . . . 4 (𝜑𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)))
168, 13lssss 20957 . . . 4 (𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼)) → 𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
1715, 16syl 17 . . 3 (𝜑𝐵 ⊆ (Base‘((ringLMod‘𝑅) ↑s 𝐼)))
18 frlmgsum.f . . . 4 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈) ∈ 𝐵)
1918fmpttd 7149 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)):𝐽𝐵)
20 rlmlmod 21233 . . . . . 6 (𝑅 ∈ Ring → (ringLMod‘𝑅) ∈ LMod)
211, 20syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ LMod)
22 eqid 2740 . . . . . 6 ((ringLMod‘𝑅) ↑s 𝐼) = ((ringLMod‘𝑅) ↑s 𝐼)
2322pwslmod 20991 . . . . 5 (((ringLMod‘𝑅) ∈ LMod ∧ 𝐼𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
2421, 2, 23syl2anc 583 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod)
25 eqid 2740 . . . . 5 (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘((ringLMod‘𝑅) ↑s 𝐼))
2625, 13lss0cl 20968 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵)
2724, 15, 26syl2anc 583 . . 3 (𝜑 → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) ∈ 𝐵)
28 lmodcmn 20930 . . . . . . 7 ((ringLMod‘𝑅) ∈ LMod → (ringLMod‘𝑅) ∈ CMnd)
2921, 28syl 17 . . . . . 6 (𝜑 → (ringLMod‘𝑅) ∈ CMnd)
30 cmnmnd 19839 . . . . . 6 ((ringLMod‘𝑅) ∈ CMnd → (ringLMod‘𝑅) ∈ Mnd)
3129, 30syl 17 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ Mnd)
3222pwsmnd 18807 . . . . 5 (((ringLMod‘𝑅) ∈ Mnd ∧ 𝐼𝑉) → ((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd)
3331, 2, 32syl2anc 583 . . . 4 (𝜑 → ((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd)
348, 9, 25mndlrid 18791 . . . 4 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ Mnd ∧ 𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) → (((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥))
3533, 34sylan 579 . . 3 ((𝜑𝑥 ∈ (Base‘((ringLMod‘𝑅) ↑s 𝐼))) → (((0g‘((ringLMod‘𝑅) ↑s 𝐼))(+g‘((ringLMod‘𝑅) ↑s 𝐼))𝑥) = 𝑥 ∧ (𝑥(+g‘((ringLMod‘𝑅) ↑s 𝐼))(0g‘((ringLMod‘𝑅) ↑s 𝐼))) = 𝑥))
368, 9, 10, 11, 12, 17, 19, 27, 35gsumress 18720 . 2 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = ((((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
37 rlmbas 21223 . . . 4 (Base‘𝑅) = (Base‘(ringLMod‘𝑅))
38 eqid 2740 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
393, 38, 4frlmbasf 21803 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑥𝐼𝑈) ∈ 𝐵) → (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
402, 18, 39syl2an2r 684 . . . . . . 7 ((𝜑𝑦𝐽) → (𝑥𝐼𝑈):𝐼⟶(Base‘𝑅))
4140fvmptelcdm 7147 . . . . . 6 (((𝜑𝑦𝐽) ∧ 𝑥𝐼) → 𝑈 ∈ (Base‘𝑅))
4241an32s 651 . . . . 5 (((𝜑𝑥𝐼) ∧ 𝑦𝐽) → 𝑈 ∈ (Base‘𝑅))
4342anasss 466 . . . 4 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈 ∈ (Base‘𝑅))
44 frlmgsum.w . . . . 5 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
45 frlmgsum.z . . . . . 6 0 = (0g𝑌)
466fveq2d 6924 . . . . . . 7 (𝜑 → (0g𝑌) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
4713lsssubg 20978 . . . . . . . . 9 ((((ringLMod‘𝑅) ↑s 𝐼) ∈ LMod ∧ 𝐵 ∈ (LSubSp‘((ringLMod‘𝑅) ↑s 𝐼))) → 𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
4824, 15, 47syl2anc 583 . . . . . . . 8 (𝜑𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)))
4910, 25subg0 19172 . . . . . . . 8 (𝐵 ∈ (SubGrp‘((ringLMod‘𝑅) ↑s 𝐼)) → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5048, 49syl 17 . . . . . . 7 (𝜑 → (0g‘((ringLMod‘𝑅) ↑s 𝐼)) = (0g‘(((ringLMod‘𝑅) ↑s 𝐼) ↾s 𝐵)))
5146, 50eqtr4d 2783 . . . . . 6 (𝜑 → (0g𝑌) = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5245, 51eqtrid 2792 . . . . 5 (𝜑0 = (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5344, 52breqtrd 5192 . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp (0g‘((ringLMod‘𝑅) ↑s 𝐼)))
5422, 37, 25, 2, 12, 29, 43, 53pwsgsum 20024 . . 3 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈))))
5512mptexd 7261 . . . . 5 (𝜑 → (𝑦𝐽𝑈) ∈ V)
56 fvexd 6935 . . . . 5 (𝜑 → (ringLMod‘𝑅) ∈ V)
5737a1i 11 . . . . 5 (𝜑 → (Base‘𝑅) = (Base‘(ringLMod‘𝑅)))
58 rlmplusg 21224 . . . . . 6 (+g𝑅) = (+g‘(ringLMod‘𝑅))
5958a1i 11 . . . . 5 (𝜑 → (+g𝑅) = (+g‘(ringLMod‘𝑅)))
6055, 1, 56, 57, 59gsumpropd 18716 . . . 4 (𝜑 → (𝑅 Σg (𝑦𝐽𝑈)) = ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈)))
6160mpteq2dv 5268 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))) = (𝑥𝐼 ↦ ((ringLMod‘𝑅) Σg (𝑦𝐽𝑈))))
6254, 61eqtr4d 2783 . 2 (𝜑 → (((ringLMod‘𝑅) ↑s 𝐼) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
637, 36, 623eqtr2d 2786 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448   finSupp cfsupp 9431  Basecbs 17258  s cress 17287  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  s cpws 17506  Mndcmnd 18772  SubGrpcsubg 19160  CMndccmn 19822  Ringcrg 20260  LModclmod 20880  LSubSpclss 20952  ringLModcrglmod 21194   freeLMod cfrlm 21789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790
This theorem is referenced by:  uvcresum  21836  matgsum  22464  matunitlindflem1  37576  matunitlindflem2  37577  aacllem  48895
  Copyright terms: Public domain W3C validator