| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumsubm | Structured version Visualization version GIF version | ||
| Description: Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumsubm.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumsubm.s | ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) |
| gsumsubm.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| gsumsubm.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| gsumsubm | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2735 | . 2 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | gsumsubm.h | . 2 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 4 | gsumsubm.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝐺)) | |
| 5 | submrcl 18780 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 7 | gsumsubm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | 1 | submss 18787 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 9 | 4, 8 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐺)) |
| 10 | gsumsubm.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 11 | eqid 2735 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 12 | 11 | subm0cl 18789 | . . 3 ⊢ (𝑆 ∈ (SubMnd‘𝐺) → (0g‘𝐺) ∈ 𝑆) |
| 13 | 4, 12 | syl 17 | . 2 ⊢ (𝜑 → (0g‘𝐺) ∈ 𝑆) |
| 14 | 1, 2, 11 | mndlrid 18731 | . . 3 ⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐺)) → (((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥)) |
| 15 | 6, 14 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝐺)) → (((0g‘𝐺)(+g‘𝐺)𝑥) = 𝑥 ∧ (𝑥(+g‘𝐺)(0g‘𝐺)) = 𝑥)) |
| 16 | 1, 2, 3, 6, 7, 9, 10, 13, 15 | gsumress 18660 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 +gcplusg 17271 0gc0g 17453 Σg cgsu 17454 Mndcmnd 18712 SubMndcsubmnd 18760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-seq 14020 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-gsum 17456 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 |
| This theorem is referenced by: gsumzsubmcl 19899 resspsrmul 21936 gsumply1subr 22169 tsmssubm 24081 amgmlem 26952 lgseisenlem4 27341 ply1degltdimlem 33662 fedgmullem1 33669 fldextrspunlsplem 33714 sge0tsms 46409 amgmwlem 49666 amgmlemALT 49667 |
| Copyright terms: Public domain | W3C validator |