MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumsubm Structured version   Visualization version   GIF version

Theorem gsumsubm 18848
Description: Evaluate a group sum in a submonoid. (Contributed by Mario Carneiro, 19-Dec-2014.)
Hypotheses
Ref Expression
gsumsubm.a (𝜑𝐴𝑉)
gsumsubm.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
gsumsubm.f (𝜑𝐹:𝐴𝑆)
gsumsubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
gsumsubm (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))

Proof of Theorem gsumsubm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . 2 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2737 . 2 (+g𝐺) = (+g𝐺)
3 gsumsubm.h . 2 𝐻 = (𝐺s 𝑆)
4 gsumsubm.s . . 3 (𝜑𝑆 ∈ (SubMnd‘𝐺))
5 submrcl 18815 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝐺 ∈ Mnd)
64, 5syl 17 . 2 (𝜑𝐺 ∈ Mnd)
7 gsumsubm.a . 2 (𝜑𝐴𝑉)
81submss 18822 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
94, 8syl 17 . 2 (𝜑𝑆 ⊆ (Base‘𝐺))
10 gsumsubm.f . 2 (𝜑𝐹:𝐴𝑆)
11 eqid 2737 . . . 4 (0g𝐺) = (0g𝐺)
1211subm0cl 18824 . . 3 (𝑆 ∈ (SubMnd‘𝐺) → (0g𝐺) ∈ 𝑆)
134, 12syl 17 . 2 (𝜑 → (0g𝐺) ∈ 𝑆)
141, 2, 11mndlrid 18766 . . 3 ((𝐺 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝐺)) → (((0g𝐺)(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)(0g𝐺)) = 𝑥))
156, 14sylan 580 . 2 ((𝜑𝑥 ∈ (Base‘𝐺)) → (((0g𝐺)(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)(0g𝐺)) = 𝑥))
161, 2, 3, 6, 7, 9, 10, 13, 15gsumress 18695 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  +gcplusg 17297  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  SubMndcsubmnd 18795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-seq 14043  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797
This theorem is referenced by:  gsumzsubmcl  19936  resspsrmul  21996  gsumply1subr  22235  tsmssubm  24151  amgmlem  27033  lgseisenlem4  27422  ply1degltdimlem  33673  fedgmullem1  33680  fldextrspunlsplem  33723  sge0tsms  46395  amgmwlem  49321  amgmlemALT  49322
  Copyright terms: Public domain W3C validator