Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringnmulrd Structured version   Visualization version   GIF version

Theorem mnringnmulrd 42581
Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.)
Hypotheses
Ref Expression
mnringnmulrd.1 𝐹 = (𝑅 MndRing 𝑀)
mnringnmulrd.2 𝐸 = Slot (πΈβ€˜ndx)
mnringnmulrd.4 (πΈβ€˜ndx) β‰  (.rβ€˜ndx)
mnringnmulrd.5 𝐴 = (Baseβ€˜π‘€)
mnringnmulrd.6 𝑉 = (𝑅 freeLMod 𝐴)
mnringnmulrd.7 (πœ‘ β†’ 𝑅 ∈ π‘ˆ)
mnringnmulrd.8 (πœ‘ β†’ 𝑀 ∈ π‘Š)
Assertion
Ref Expression
mnringnmulrd (πœ‘ β†’ (πΈβ€˜π‘‰) = (πΈβ€˜πΉ))

Proof of Theorem mnringnmulrd
Dummy variables π‘Ž 𝑏 𝑖 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringnmulrd.2 . . 3 𝐸 = Slot (πΈβ€˜ndx)
2 mnringnmulrd.4 . . 3 (πΈβ€˜ndx) β‰  (.rβ€˜ndx)
31, 2setsnid 17089 . 2 (πΈβ€˜π‘‰) = (πΈβ€˜(𝑉 sSet ⟨(.rβ€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘‰), 𝑦 ∈ (Baseβ€˜π‘‰) ↦ (𝑉 Ξ£g (π‘Ž ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (π‘Ž(+gβ€˜π‘€)𝑏), ((π‘₯β€˜π‘Ž)(.rβ€˜π‘…)(π‘¦β€˜π‘)), (0gβ€˜π‘…))))))⟩))
4 mnringnmulrd.1 . . . 4 𝐹 = (𝑅 MndRing 𝑀)
5 eqid 2733 . . . 4 (.rβ€˜π‘…) = (.rβ€˜π‘…)
6 eqid 2733 . . . 4 (0gβ€˜π‘…) = (0gβ€˜π‘…)
7 mnringnmulrd.5 . . . 4 𝐴 = (Baseβ€˜π‘€)
8 eqid 2733 . . . 4 (+gβ€˜π‘€) = (+gβ€˜π‘€)
9 mnringnmulrd.6 . . . 4 𝑉 = (𝑅 freeLMod 𝐴)
10 eqid 2733 . . . 4 (Baseβ€˜π‘‰) = (Baseβ€˜π‘‰)
11 mnringnmulrd.7 . . . 4 (πœ‘ β†’ 𝑅 ∈ π‘ˆ)
12 mnringnmulrd.8 . . . 4 (πœ‘ β†’ 𝑀 ∈ π‘Š)
134, 5, 6, 7, 8, 9, 10, 11, 12mnringvald 42580 . . 3 (πœ‘ β†’ 𝐹 = (𝑉 sSet ⟨(.rβ€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘‰), 𝑦 ∈ (Baseβ€˜π‘‰) ↦ (𝑉 Ξ£g (π‘Ž ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (π‘Ž(+gβ€˜π‘€)𝑏), ((π‘₯β€˜π‘Ž)(.rβ€˜π‘…)(π‘¦β€˜π‘)), (0gβ€˜π‘…))))))⟩))
1413fveq2d 6850 . 2 (πœ‘ β†’ (πΈβ€˜πΉ) = (πΈβ€˜(𝑉 sSet ⟨(.rβ€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘‰), 𝑦 ∈ (Baseβ€˜π‘‰) ↦ (𝑉 Ξ£g (π‘Ž ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (π‘Ž(+gβ€˜π‘€)𝑏), ((π‘₯β€˜π‘Ž)(.rβ€˜π‘…)(π‘¦β€˜π‘)), (0gβ€˜π‘…))))))⟩)))
153, 14eqtr4id 2792 1 (πœ‘ β†’ (πΈβ€˜π‘‰) = (πΈβ€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107   β‰  wne 2940  ifcif 4490  βŸ¨cop 4596   ↦ cmpt 5192  β€˜cfv 6500  (class class class)co 7361   ∈ cmpo 7363   sSet csts 17043  Slot cslot 17061  ndxcnx 17073  Basecbs 17091  +gcplusg 17141  .rcmulr 17142  0gc0g 17329   Ξ£g cgsu 17330   freeLMod cfrlm 21175   MndRing cmnring 42578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-res 5649  df-iota 6452  df-fun 6502  df-fv 6508  df-ov 7364  df-oprab 7365  df-mpo 7366  df-sets 17044  df-slot 17062  df-mnring 42579
This theorem is referenced by:  mnringbased  42583  mnringaddgd  42589  mnringscad  42594  mnringvscad  42596
  Copyright terms: Public domain W3C validator