Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringnmulrd | Structured version Visualization version GIF version |
Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
Ref | Expression |
---|---|
mnringnmulrd.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnringnmulrd.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
mnringnmulrd.4 | ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
mnringnmulrd.5 | ⊢ 𝐴 = (Base‘𝑀) |
mnringnmulrd.6 | ⊢ 𝑉 = (𝑅 freeLMod 𝐴) |
mnringnmulrd.7 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
mnringnmulrd.8 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
Ref | Expression |
---|---|
mnringnmulrd | ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringnmulrd.2 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | mnringnmulrd.4 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) | |
3 | 1, 2 | setsnid 16838 | . 2 ⊢ (𝐸‘𝑉) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
4 | mnringnmulrd.1 | . . . 4 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
5 | eqid 2738 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | eqid 2738 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | mnringnmulrd.5 | . . . 4 ⊢ 𝐴 = (Base‘𝑀) | |
8 | eqid 2738 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
9 | mnringnmulrd.6 | . . . 4 ⊢ 𝑉 = (𝑅 freeLMod 𝐴) | |
10 | eqid 2738 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
11 | mnringnmulrd.7 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
12 | mnringnmulrd.8 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | mnringvald 41715 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
14 | 13 | fveq2d 6760 | . 2 ⊢ (𝜑 → (𝐸‘𝐹) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉))) |
15 | 3, 14 | eqtr4id 2798 | 1 ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ifcif 4456 〈cop 4564 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 sSet csts 16792 Slot cslot 16810 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 0gc0g 17067 Σg cgsu 17068 freeLMod cfrlm 20863 MndRing cmnring 41713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-sets 16793 df-slot 16811 df-mnring 41714 |
This theorem is referenced by: mnringbased 41718 mnringaddgd 41724 mnringscad 41729 mnringvscad 41731 |
Copyright terms: Public domain | W3C validator |