| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringnmulrd | Structured version Visualization version GIF version | ||
| Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
| Ref | Expression |
|---|---|
| mnringnmulrd.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
| mnringnmulrd.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| mnringnmulrd.4 | ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
| mnringnmulrd.5 | ⊢ 𝐴 = (Base‘𝑀) |
| mnringnmulrd.6 | ⊢ 𝑉 = (𝑅 freeLMod 𝐴) |
| mnringnmulrd.7 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
| mnringnmulrd.8 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| mnringnmulrd | ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnringnmulrd.2 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | mnringnmulrd.4 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) | |
| 3 | 1, 2 | setsnid 17232 | . 2 ⊢ (𝐸‘𝑉) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
| 4 | mnringnmulrd.1 | . . . 4 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
| 5 | eqid 2736 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | eqid 2736 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 7 | mnringnmulrd.5 | . . . 4 ⊢ 𝐴 = (Base‘𝑀) | |
| 8 | eqid 2736 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 9 | mnringnmulrd.6 | . . . 4 ⊢ 𝑉 = (𝑅 freeLMod 𝐴) | |
| 10 | eqid 2736 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 11 | mnringnmulrd.7 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
| 12 | mnringnmulrd.8 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
| 13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | mnringvald 44204 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
| 14 | 13 | fveq2d 6885 | . 2 ⊢ (𝜑 → (𝐸‘𝐹) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉))) |
| 15 | 3, 14 | eqtr4id 2790 | 1 ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ifcif 4505 〈cop 4612 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 sSet csts 17187 Slot cslot 17205 ndxcnx 17217 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 0gc0g 17458 Σg cgsu 17459 freeLMod cfrlm 21711 MndRing cmnring 44202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-sets 17188 df-slot 17206 df-mnring 44203 |
| This theorem is referenced by: mnringbased 44206 mnringaddgd 44211 mnringscad 44215 mnringvscad 44216 |
| Copyright terms: Public domain | W3C validator |