| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringnmulrd | Structured version Visualization version GIF version | ||
| Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
| Ref | Expression |
|---|---|
| mnringnmulrd.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
| mnringnmulrd.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
| mnringnmulrd.4 | ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
| mnringnmulrd.5 | ⊢ 𝐴 = (Base‘𝑀) |
| mnringnmulrd.6 | ⊢ 𝑉 = (𝑅 freeLMod 𝐴) |
| mnringnmulrd.7 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
| mnringnmulrd.8 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| mnringnmulrd | ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnringnmulrd.2 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
| 2 | mnringnmulrd.4 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) | |
| 3 | 1, 2 | setsnid 17119 | . 2 ⊢ (𝐸‘𝑉) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
| 4 | mnringnmulrd.1 | . . . 4 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
| 5 | eqid 2731 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | eqid 2731 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 7 | mnringnmulrd.5 | . . . 4 ⊢ 𝐴 = (Base‘𝑀) | |
| 8 | eqid 2731 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 9 | mnringnmulrd.6 | . . . 4 ⊢ 𝑉 = (𝑅 freeLMod 𝐴) | |
| 10 | eqid 2731 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 11 | mnringnmulrd.7 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
| 12 | mnringnmulrd.8 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
| 13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | mnringvald 44316 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
| 14 | 13 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝐸‘𝐹) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉))) |
| 15 | 3, 14 | eqtr4id 2785 | 1 ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ifcif 4472 〈cop 4579 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 sSet csts 17074 Slot cslot 17092 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 0gc0g 17343 Σg cgsu 17344 freeLMod cfrlm 21683 MndRing cmnring 44314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-sets 17075 df-slot 17093 df-mnring 44315 |
| This theorem is referenced by: mnringbased 44318 mnringaddgd 44323 mnringscad 44327 mnringvscad 44328 |
| Copyright terms: Public domain | W3C validator |