Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringnmulrd Structured version   Visualization version   GIF version

Theorem mnringnmulrd 44196
Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.)
Hypotheses
Ref Expression
mnringnmulrd.1 𝐹 = (𝑅 MndRing 𝑀)
mnringnmulrd.2 𝐸 = Slot (𝐸‘ndx)
mnringnmulrd.4 (𝐸‘ndx) ≠ (.r‘ndx)
mnringnmulrd.5 𝐴 = (Base‘𝑀)
mnringnmulrd.6 𝑉 = (𝑅 freeLMod 𝐴)
mnringnmulrd.7 (𝜑𝑅𝑈)
mnringnmulrd.8 (𝜑𝑀𝑊)
Assertion
Ref Expression
mnringnmulrd (𝜑 → (𝐸𝑉) = (𝐸𝐹))

Proof of Theorem mnringnmulrd
Dummy variables 𝑎 𝑏 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringnmulrd.2 . . 3 𝐸 = Slot (𝐸‘ndx)
2 mnringnmulrd.4 . . 3 (𝐸‘ndx) ≠ (.r‘ndx)
31, 2setsnid 17154 . 2 (𝐸𝑉) = (𝐸‘(𝑉 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑥𝑎)(.r𝑅)(𝑦𝑏)), (0g𝑅))))))⟩))
4 mnringnmulrd.1 . . . 4 𝐹 = (𝑅 MndRing 𝑀)
5 eqid 2729 . . . 4 (.r𝑅) = (.r𝑅)
6 eqid 2729 . . . 4 (0g𝑅) = (0g𝑅)
7 mnringnmulrd.5 . . . 4 𝐴 = (Base‘𝑀)
8 eqid 2729 . . . 4 (+g𝑀) = (+g𝑀)
9 mnringnmulrd.6 . . . 4 𝑉 = (𝑅 freeLMod 𝐴)
10 eqid 2729 . . . 4 (Base‘𝑉) = (Base‘𝑉)
11 mnringnmulrd.7 . . . 4 (𝜑𝑅𝑈)
12 mnringnmulrd.8 . . . 4 (𝜑𝑀𝑊)
134, 5, 6, 7, 8, 9, 10, 11, 12mnringvald 44195 . . 3 (𝜑𝐹 = (𝑉 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑥𝑎)(.r𝑅)(𝑦𝑏)), (0g𝑅))))))⟩))
1413fveq2d 6844 . 2 (𝜑 → (𝐸𝐹) = (𝐸‘(𝑉 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑥𝑎)(.r𝑅)(𝑦𝑏)), (0g𝑅))))))⟩)))
153, 14eqtr4id 2783 1 (𝜑 → (𝐸𝑉) = (𝐸𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  ifcif 4484  cop 4591  cmpt 5183  cfv 6499  (class class class)co 7369  cmpo 7371   sSet csts 17109  Slot cslot 17127  ndxcnx 17139  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378   Σg cgsu 17379   freeLMod cfrlm 21688   MndRing cmnring 44193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-res 5643  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-sets 17110  df-slot 17128  df-mnring 44194
This theorem is referenced by:  mnringbased  44197  mnringaddgd  44202  mnringscad  44206  mnringvscad  44207
  Copyright terms: Public domain W3C validator