Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringnmulrd | Structured version Visualization version GIF version |
Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.) |
Ref | Expression |
---|---|
mnringnmulrd.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnringnmulrd.2 | ⊢ 𝐸 = Slot (𝐸‘ndx) |
mnringnmulrd.4 | ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
mnringnmulrd.5 | ⊢ 𝐴 = (Base‘𝑀) |
mnringnmulrd.6 | ⊢ 𝑉 = (𝑅 freeLMod 𝐴) |
mnringnmulrd.7 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
mnringnmulrd.8 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
Ref | Expression |
---|---|
mnringnmulrd | ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringnmulrd.2 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) | |
2 | mnringnmulrd.4 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) | |
3 | 1, 2 | setsnid 16910 | . 2 ⊢ (𝐸‘𝑉) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
4 | mnringnmulrd.1 | . . . 4 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
5 | eqid 2738 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
6 | eqid 2738 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
7 | mnringnmulrd.5 | . . . 4 ⊢ 𝐴 = (Base‘𝑀) | |
8 | eqid 2738 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
9 | mnringnmulrd.6 | . . . 4 ⊢ 𝑉 = (𝑅 freeLMod 𝐴) | |
10 | eqid 2738 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
11 | mnringnmulrd.7 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
12 | mnringnmulrd.8 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | mnringvald 41826 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
14 | 13 | fveq2d 6778 | . 2 ⊢ (𝜑 → (𝐸‘𝐹) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉))) |
15 | 3, 14 | eqtr4id 2797 | 1 ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ifcif 4459 〈cop 4567 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 sSet csts 16864 Slot cslot 16882 ndxcnx 16894 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 0gc0g 17150 Σg cgsu 17151 freeLMod cfrlm 20953 MndRing cmnring 41824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-res 5601 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-sets 16865 df-slot 16883 df-mnring 41825 |
This theorem is referenced by: mnringbased 41829 mnringaddgd 41835 mnringscad 41840 mnringvscad 41842 |
Copyright terms: Public domain | W3C validator |