Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringnmulrd Structured version   Visualization version   GIF version

Theorem mnringnmulrd 41827
Description: Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (Revised by AV, 1-Nov-2024.)
Hypotheses
Ref Expression
mnringnmulrd.1 𝐹 = (𝑅 MndRing 𝑀)
mnringnmulrd.2 𝐸 = Slot (𝐸‘ndx)
mnringnmulrd.4 (𝐸‘ndx) ≠ (.r‘ndx)
mnringnmulrd.5 𝐴 = (Base‘𝑀)
mnringnmulrd.6 𝑉 = (𝑅 freeLMod 𝐴)
mnringnmulrd.7 (𝜑𝑅𝑈)
mnringnmulrd.8 (𝜑𝑀𝑊)
Assertion
Ref Expression
mnringnmulrd (𝜑 → (𝐸𝑉) = (𝐸𝐹))

Proof of Theorem mnringnmulrd
Dummy variables 𝑎 𝑏 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringnmulrd.2 . . 3 𝐸 = Slot (𝐸‘ndx)
2 mnringnmulrd.4 . . 3 (𝐸‘ndx) ≠ (.r‘ndx)
31, 2setsnid 16910 . 2 (𝐸𝑉) = (𝐸‘(𝑉 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑥𝑎)(.r𝑅)(𝑦𝑏)), (0g𝑅))))))⟩))
4 mnringnmulrd.1 . . . 4 𝐹 = (𝑅 MndRing 𝑀)
5 eqid 2738 . . . 4 (.r𝑅) = (.r𝑅)
6 eqid 2738 . . . 4 (0g𝑅) = (0g𝑅)
7 mnringnmulrd.5 . . . 4 𝐴 = (Base‘𝑀)
8 eqid 2738 . . . 4 (+g𝑀) = (+g𝑀)
9 mnringnmulrd.6 . . . 4 𝑉 = (𝑅 freeLMod 𝐴)
10 eqid 2738 . . . 4 (Base‘𝑉) = (Base‘𝑉)
11 mnringnmulrd.7 . . . 4 (𝜑𝑅𝑈)
12 mnringnmulrd.8 . . . 4 (𝜑𝑀𝑊)
134, 5, 6, 7, 8, 9, 10, 11, 12mnringvald 41826 . . 3 (𝜑𝐹 = (𝑉 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑥𝑎)(.r𝑅)(𝑦𝑏)), (0g𝑅))))))⟩))
1413fveq2d 6778 . 2 (𝜑 → (𝐸𝐹) = (𝐸‘(𝑉 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑥𝑎)(.r𝑅)(𝑦𝑏)), (0g𝑅))))))⟩)))
153, 14eqtr4id 2797 1 (𝜑 → (𝐸𝑉) = (𝐸𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  ifcif 4459  cop 4567  cmpt 5157  cfv 6433  (class class class)co 7275  cmpo 7277   sSet csts 16864  Slot cslot 16882  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  0gc0g 17150   Σg cgsu 17151   freeLMod cfrlm 20953   MndRing cmnring 41824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-sets 16865  df-slot 16883  df-mnring 41825
This theorem is referenced by:  mnringbased  41829  mnringaddgd  41835  mnringscad  41840  mnringvscad  41842
  Copyright terms: Public domain W3C validator