| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringnmulrdOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of mnringnmulrd 44228 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| mnringnmulrdOLD.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
| mnringnmulrdOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
| mnringnmulrdOLD.3 | ⊢ 𝑁 ∈ ℕ |
| mnringnmulrdOLD.4 | ⊢ 𝑁 ≠ (.r‘ndx) |
| mnringnmulrdOLD.5 | ⊢ 𝐴 = (Base‘𝑀) |
| mnringnmulrdOLD.6 | ⊢ 𝑉 = (𝑅 freeLMod 𝐴) |
| mnringnmulrdOLD.7 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
| mnringnmulrdOLD.8 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| mnringnmulrdOLD | ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnringnmulrdOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | mnringnmulrdOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxid 17234 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | 1, 2 | ndxarg 17233 | . . . 4 ⊢ (𝐸‘ndx) = 𝑁 |
| 5 | mnringnmulrdOLD.4 | . . . 4 ⊢ 𝑁 ≠ (.r‘ndx) | |
| 6 | 4, 5 | eqnetri 3011 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
| 7 | 3, 6 | setsnid 17245 | . 2 ⊢ (𝐸‘𝑉) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
| 8 | mnringnmulrdOLD.1 | . . . 4 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
| 9 | eqid 2737 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 10 | eqid 2737 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 11 | mnringnmulrdOLD.5 | . . . 4 ⊢ 𝐴 = (Base‘𝑀) | |
| 12 | eqid 2737 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 13 | mnringnmulrdOLD.6 | . . . 4 ⊢ 𝑉 = (𝑅 freeLMod 𝐴) | |
| 14 | eqid 2737 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 15 | mnringnmulrdOLD.7 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
| 16 | mnringnmulrdOLD.8 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
| 17 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | mnringvald 44227 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
| 18 | 17 | fveq2d 6910 | . 2 ⊢ (𝜑 → (𝐸‘𝐹) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉))) |
| 19 | 7, 18 | eqtr4id 2796 | 1 ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ifcif 4525 〈cop 4632 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 ∈ cmpo 7433 ℕcn 12266 sSet csts 17200 Slot cslot 17218 ndxcnx 17230 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 0gc0g 17484 Σg cgsu 17485 freeLMod cfrlm 21766 MndRing cmnring 44225 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-nn 12267 df-sets 17201 df-slot 17219 df-ndx 17231 df-mnring 44226 |
| This theorem is referenced by: mnringbasedOLD 44231 mnringaddgdOLD 44237 mnringscadOLD 44242 mnringvscadOLD 44244 |
| Copyright terms: Public domain | W3C validator |