![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringnmulrdOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mnringnmulrd 44205 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mnringnmulrdOLD.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnringnmulrdOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
mnringnmulrdOLD.3 | ⊢ 𝑁 ∈ ℕ |
mnringnmulrdOLD.4 | ⊢ 𝑁 ≠ (.r‘ndx) |
mnringnmulrdOLD.5 | ⊢ 𝐴 = (Base‘𝑀) |
mnringnmulrdOLD.6 | ⊢ 𝑉 = (𝑅 freeLMod 𝐴) |
mnringnmulrdOLD.7 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
mnringnmulrdOLD.8 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
Ref | Expression |
---|---|
mnringnmulrdOLD | ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringnmulrdOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | mnringnmulrdOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 17231 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 17230 | . . . 4 ⊢ (𝐸‘ndx) = 𝑁 |
5 | mnringnmulrdOLD.4 | . . . 4 ⊢ 𝑁 ≠ (.r‘ndx) | |
6 | 4, 5 | eqnetri 3009 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
7 | 3, 6 | setsnid 17243 | . 2 ⊢ (𝐸‘𝑉) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
8 | mnringnmulrdOLD.1 | . . . 4 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
9 | eqid 2735 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | eqid 2735 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
11 | mnringnmulrdOLD.5 | . . . 4 ⊢ 𝐴 = (Base‘𝑀) | |
12 | eqid 2735 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
13 | mnringnmulrdOLD.6 | . . . 4 ⊢ 𝑉 = (𝑅 freeLMod 𝐴) | |
14 | eqid 2735 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
15 | mnringnmulrdOLD.7 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
16 | mnringnmulrdOLD.8 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
17 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | mnringvald 44204 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
18 | 17 | fveq2d 6911 | . 2 ⊢ (𝜑 → (𝐸‘𝐹) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉))) |
19 | 7, 18 | eqtr4id 2794 | 1 ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ifcif 4531 〈cop 4637 ↦ cmpt 5231 ‘cfv 6563 (class class class)co 7431 ∈ cmpo 7433 ℕcn 12264 sSet csts 17197 Slot cslot 17215 ndxcnx 17227 Basecbs 17245 +gcplusg 17298 .rcmulr 17299 0gc0g 17486 Σg cgsu 17487 freeLMod cfrlm 21784 MndRing cmnring 44202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-sets 17198 df-slot 17216 df-ndx 17228 df-mnring 44203 |
This theorem is referenced by: mnringbasedOLD 44208 mnringaddgdOLD 44214 mnringscadOLD 44219 mnringvscadOLD 44221 |
Copyright terms: Public domain | W3C validator |