![]() |
Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringnmulrdOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mnringnmulrd 44178 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mnringnmulrdOLD.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnringnmulrdOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
mnringnmulrdOLD.3 | ⊢ 𝑁 ∈ ℕ |
mnringnmulrdOLD.4 | ⊢ 𝑁 ≠ (.r‘ndx) |
mnringnmulrdOLD.5 | ⊢ 𝐴 = (Base‘𝑀) |
mnringnmulrdOLD.6 | ⊢ 𝑉 = (𝑅 freeLMod 𝐴) |
mnringnmulrdOLD.7 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
mnringnmulrdOLD.8 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
Ref | Expression |
---|---|
mnringnmulrdOLD | ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringnmulrdOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | mnringnmulrdOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 17244 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 17243 | . . . 4 ⊢ (𝐸‘ndx) = 𝑁 |
5 | mnringnmulrdOLD.4 | . . . 4 ⊢ 𝑁 ≠ (.r‘ndx) | |
6 | 4, 5 | eqnetri 3017 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
7 | 3, 6 | setsnid 17256 | . 2 ⊢ (𝐸‘𝑉) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
8 | mnringnmulrdOLD.1 | . . . 4 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
9 | eqid 2740 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | eqid 2740 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
11 | mnringnmulrdOLD.5 | . . . 4 ⊢ 𝐴 = (Base‘𝑀) | |
12 | eqid 2740 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
13 | mnringnmulrdOLD.6 | . . . 4 ⊢ 𝑉 = (𝑅 freeLMod 𝐴) | |
14 | eqid 2740 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
15 | mnringnmulrdOLD.7 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
16 | mnringnmulrdOLD.8 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
17 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | mnringvald 44177 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
18 | 17 | fveq2d 6924 | . 2 ⊢ (𝜑 → (𝐸‘𝐹) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉))) |
19 | 7, 18 | eqtr4id 2799 | 1 ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ifcif 4548 〈cop 4654 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ℕcn 12293 sSet csts 17210 Slot cslot 17228 ndxcnx 17240 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 0gc0g 17499 Σg cgsu 17500 freeLMod cfrlm 21789 MndRing cmnring 44175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-sets 17211 df-slot 17229 df-ndx 17241 df-mnring 44176 |
This theorem is referenced by: mnringbasedOLD 44181 mnringaddgdOLD 44187 mnringscadOLD 44192 mnringvscadOLD 44194 |
Copyright terms: Public domain | W3C validator |