Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringnmulrdOLD Structured version   Visualization version   GIF version

Theorem mnringnmulrdOLD 41690
Description: Obsolete version of mnringnmulrd 41689 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
mnringnmulrdOLD.1 𝐹 = (𝑅 MndRing 𝑀)
mnringnmulrdOLD.2 𝐸 = Slot 𝑁
mnringnmulrdOLD.3 𝑁 ∈ ℕ
mnringnmulrdOLD.4 𝑁 ≠ (.r‘ndx)
mnringnmulrdOLD.5 𝐴 = (Base‘𝑀)
mnringnmulrdOLD.6 𝑉 = (𝑅 freeLMod 𝐴)
mnringnmulrdOLD.7 (𝜑𝑅𝑈)
mnringnmulrdOLD.8 (𝜑𝑀𝑊)
Assertion
Ref Expression
mnringnmulrdOLD (𝜑 → (𝐸𝑉) = (𝐸𝐹))

Proof of Theorem mnringnmulrdOLD
Dummy variables 𝑎 𝑏 𝑖 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringnmulrdOLD.2 . . . 4 𝐸 = Slot 𝑁
2 mnringnmulrdOLD.3 . . . 4 𝑁 ∈ ℕ
31, 2ndxid 16801 . . 3 𝐸 = Slot (𝐸‘ndx)
41, 2ndxarg 16800 . . . 4 (𝐸‘ndx) = 𝑁
5 mnringnmulrdOLD.4 . . . 4 𝑁 ≠ (.r‘ndx)
64, 5eqnetri 3014 . . 3 (𝐸‘ndx) ≠ (.r‘ndx)
73, 6setsnid 16813 . 2 (𝐸𝑉) = (𝐸‘(𝑉 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑥𝑎)(.r𝑅)(𝑦𝑏)), (0g𝑅))))))⟩))
8 mnringnmulrdOLD.1 . . . 4 𝐹 = (𝑅 MndRing 𝑀)
9 eqid 2739 . . . 4 (.r𝑅) = (.r𝑅)
10 eqid 2739 . . . 4 (0g𝑅) = (0g𝑅)
11 mnringnmulrdOLD.5 . . . 4 𝐴 = (Base‘𝑀)
12 eqid 2739 . . . 4 (+g𝑀) = (+g𝑀)
13 mnringnmulrdOLD.6 . . . 4 𝑉 = (𝑅 freeLMod 𝐴)
14 eqid 2739 . . . 4 (Base‘𝑉) = (Base‘𝑉)
15 mnringnmulrdOLD.7 . . . 4 (𝜑𝑅𝑈)
16 mnringnmulrdOLD.8 . . . 4 (𝜑𝑀𝑊)
178, 9, 10, 11, 12, 13, 14, 15, 16mnringvald 41688 . . 3 (𝜑𝐹 = (𝑉 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑥𝑎)(.r𝑅)(𝑦𝑏)), (0g𝑅))))))⟩))
1817fveq2d 6757 . 2 (𝜑 → (𝐸𝐹) = (𝐸‘(𝑉 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎𝐴, 𝑏𝐴 ↦ (𝑖𝐴 ↦ if(𝑖 = (𝑎(+g𝑀)𝑏), ((𝑥𝑎)(.r𝑅)(𝑦𝑏)), (0g𝑅))))))⟩)))
197, 18eqtr4id 2799 1 (𝜑 → (𝐸𝑉) = (𝐸𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  wne 2943  ifcif 4456  cop 4564  cmpt 5152  cfv 6415  (class class class)co 7252  cmpo 7254  cn 11878   sSet csts 16767  Slot cslot 16785  ndxcnx 16797  Basecbs 16815  +gcplusg 16863  .rcmulr 16864  0gc0g 17042   Σg cgsu 17043   freeLMod cfrlm 20838   MndRing cmnring 41686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-1cn 10835  ax-addcl 10837
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-nn 11879  df-sets 16768  df-slot 16786  df-ndx 16798  df-mnring 41687
This theorem is referenced by:  mnringbasedOLD  41692  mnringaddgdOLD  41698  mnringscadOLD  41703  mnringvscadOLD  41705
  Copyright terms: Public domain W3C validator