Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mnringnmulrdOLD | Structured version Visualization version GIF version |
Description: Obsolete version of mnringnmulrd 41689 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
mnringnmulrdOLD.1 | ⊢ 𝐹 = (𝑅 MndRing 𝑀) |
mnringnmulrdOLD.2 | ⊢ 𝐸 = Slot 𝑁 |
mnringnmulrdOLD.3 | ⊢ 𝑁 ∈ ℕ |
mnringnmulrdOLD.4 | ⊢ 𝑁 ≠ (.r‘ndx) |
mnringnmulrdOLD.5 | ⊢ 𝐴 = (Base‘𝑀) |
mnringnmulrdOLD.6 | ⊢ 𝑉 = (𝑅 freeLMod 𝐴) |
mnringnmulrdOLD.7 | ⊢ (𝜑 → 𝑅 ∈ 𝑈) |
mnringnmulrdOLD.8 | ⊢ (𝜑 → 𝑀 ∈ 𝑊) |
Ref | Expression |
---|---|
mnringnmulrdOLD | ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mnringnmulrdOLD.2 | . . . 4 ⊢ 𝐸 = Slot 𝑁 | |
2 | mnringnmulrdOLD.3 | . . . 4 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 16801 | . . 3 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 16800 | . . . 4 ⊢ (𝐸‘ndx) = 𝑁 |
5 | mnringnmulrdOLD.4 | . . . 4 ⊢ 𝑁 ≠ (.r‘ndx) | |
6 | 4, 5 | eqnetri 3014 | . . 3 ⊢ (𝐸‘ndx) ≠ (.r‘ndx) |
7 | 3, 6 | setsnid 16813 | . 2 ⊢ (𝐸‘𝑉) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
8 | mnringnmulrdOLD.1 | . . . 4 ⊢ 𝐹 = (𝑅 MndRing 𝑀) | |
9 | eqid 2739 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
10 | eqid 2739 | . . . 4 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
11 | mnringnmulrdOLD.5 | . . . 4 ⊢ 𝐴 = (Base‘𝑀) | |
12 | eqid 2739 | . . . 4 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
13 | mnringnmulrdOLD.6 | . . . 4 ⊢ 𝑉 = (𝑅 freeLMod 𝐴) | |
14 | eqid 2739 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
15 | mnringnmulrdOLD.7 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑈) | |
16 | mnringnmulrdOLD.8 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑊) | |
17 | 8, 9, 10, 11, 12, 13, 14, 15, 16 | mnringvald 41688 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉)) |
18 | 17 | fveq2d 6757 | . 2 ⊢ (𝜑 → (𝐸‘𝐹) = (𝐸‘(𝑉 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑉), 𝑦 ∈ (Base‘𝑉) ↦ (𝑉 Σg (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (𝑎(+g‘𝑀)𝑏), ((𝑥‘𝑎)(.r‘𝑅)(𝑦‘𝑏)), (0g‘𝑅))))))〉))) |
19 | 7, 18 | eqtr4id 2799 | 1 ⊢ (𝜑 → (𝐸‘𝑉) = (𝐸‘𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ifcif 4456 〈cop 4564 ↦ cmpt 5152 ‘cfv 6415 (class class class)co 7252 ∈ cmpo 7254 ℕcn 11878 sSet csts 16767 Slot cslot 16785 ndxcnx 16797 Basecbs 16815 +gcplusg 16863 .rcmulr 16864 0gc0g 17042 Σg cgsu 17043 freeLMod cfrlm 20838 MndRing cmnring 41686 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-1cn 10835 ax-addcl 10837 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-nn 11879 df-sets 16768 df-slot 16786 df-ndx 16798 df-mnring 41687 |
This theorem is referenced by: mnringbasedOLD 41692 mnringaddgdOLD 41698 mnringscadOLD 41703 mnringvscadOLD 41705 |
Copyright terms: Public domain | W3C validator |