Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnringnmulrdOLD Structured version   Visualization version   GIF version

Theorem mnringnmulrdOLD 42969
Description: Obsolete version of mnringnmulrd 42968 as of 1-Nov-2024. Components of a monoid ring other than its ring product match its underlying free module. (Contributed by Rohan Ridenour, 14-May-2024.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
mnringnmulrdOLD.1 𝐹 = (𝑅 MndRing 𝑀)
mnringnmulrdOLD.2 𝐸 = Slot 𝑁
mnringnmulrdOLD.3 𝑁 ∈ β„•
mnringnmulrdOLD.4 𝑁 β‰  (.rβ€˜ndx)
mnringnmulrdOLD.5 𝐴 = (Baseβ€˜π‘€)
mnringnmulrdOLD.6 𝑉 = (𝑅 freeLMod 𝐴)
mnringnmulrdOLD.7 (πœ‘ β†’ 𝑅 ∈ π‘ˆ)
mnringnmulrdOLD.8 (πœ‘ β†’ 𝑀 ∈ π‘Š)
Assertion
Ref Expression
mnringnmulrdOLD (πœ‘ β†’ (πΈβ€˜π‘‰) = (πΈβ€˜πΉ))

Proof of Theorem mnringnmulrdOLD
Dummy variables π‘Ž 𝑏 𝑖 π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mnringnmulrdOLD.2 . . . 4 𝐸 = Slot 𝑁
2 mnringnmulrdOLD.3 . . . 4 𝑁 ∈ β„•
31, 2ndxid 17130 . . 3 𝐸 = Slot (πΈβ€˜ndx)
41, 2ndxarg 17129 . . . 4 (πΈβ€˜ndx) = 𝑁
5 mnringnmulrdOLD.4 . . . 4 𝑁 β‰  (.rβ€˜ndx)
64, 5eqnetri 3012 . . 3 (πΈβ€˜ndx) β‰  (.rβ€˜ndx)
73, 6setsnid 17142 . 2 (πΈβ€˜π‘‰) = (πΈβ€˜(𝑉 sSet ⟨(.rβ€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘‰), 𝑦 ∈ (Baseβ€˜π‘‰) ↦ (𝑉 Ξ£g (π‘Ž ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (π‘Ž(+gβ€˜π‘€)𝑏), ((π‘₯β€˜π‘Ž)(.rβ€˜π‘…)(π‘¦β€˜π‘)), (0gβ€˜π‘…))))))⟩))
8 mnringnmulrdOLD.1 . . . 4 𝐹 = (𝑅 MndRing 𝑀)
9 eqid 2733 . . . 4 (.rβ€˜π‘…) = (.rβ€˜π‘…)
10 eqid 2733 . . . 4 (0gβ€˜π‘…) = (0gβ€˜π‘…)
11 mnringnmulrdOLD.5 . . . 4 𝐴 = (Baseβ€˜π‘€)
12 eqid 2733 . . . 4 (+gβ€˜π‘€) = (+gβ€˜π‘€)
13 mnringnmulrdOLD.6 . . . 4 𝑉 = (𝑅 freeLMod 𝐴)
14 eqid 2733 . . . 4 (Baseβ€˜π‘‰) = (Baseβ€˜π‘‰)
15 mnringnmulrdOLD.7 . . . 4 (πœ‘ β†’ 𝑅 ∈ π‘ˆ)
16 mnringnmulrdOLD.8 . . . 4 (πœ‘ β†’ 𝑀 ∈ π‘Š)
178, 9, 10, 11, 12, 13, 14, 15, 16mnringvald 42967 . . 3 (πœ‘ β†’ 𝐹 = (𝑉 sSet ⟨(.rβ€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘‰), 𝑦 ∈ (Baseβ€˜π‘‰) ↦ (𝑉 Ξ£g (π‘Ž ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (π‘Ž(+gβ€˜π‘€)𝑏), ((π‘₯β€˜π‘Ž)(.rβ€˜π‘…)(π‘¦β€˜π‘)), (0gβ€˜π‘…))))))⟩))
1817fveq2d 6896 . 2 (πœ‘ β†’ (πΈβ€˜πΉ) = (πΈβ€˜(𝑉 sSet ⟨(.rβ€˜ndx), (π‘₯ ∈ (Baseβ€˜π‘‰), 𝑦 ∈ (Baseβ€˜π‘‰) ↦ (𝑉 Ξ£g (π‘Ž ∈ 𝐴, 𝑏 ∈ 𝐴 ↦ (𝑖 ∈ 𝐴 ↦ if(𝑖 = (π‘Ž(+gβ€˜π‘€)𝑏), ((π‘₯β€˜π‘Ž)(.rβ€˜π‘…)(π‘¦β€˜π‘)), (0gβ€˜π‘…))))))⟩)))
197, 18eqtr4id 2792 1 (πœ‘ β†’ (πΈβ€˜π‘‰) = (πΈβ€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  ifcif 4529  βŸ¨cop 4635   ↦ cmpt 5232  β€˜cfv 6544  (class class class)co 7409   ∈ cmpo 7411  β„•cn 12212   sSet csts 17096  Slot cslot 17114  ndxcnx 17126  Basecbs 17144  +gcplusg 17197  .rcmulr 17198  0gc0g 17385   Ξ£g cgsu 17386   freeLMod cfrlm 21301   MndRing cmnring 42965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-1cn 11168  ax-addcl 11170
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-nn 12213  df-sets 17097  df-slot 17115  df-ndx 17127  df-mnring 42966
This theorem is referenced by:  mnringbasedOLD  42971  mnringaddgdOLD  42977  mnringscadOLD  42982  mnringvscadOLD  42984
  Copyright terms: Public domain W3C validator