MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopn0yelv Structured version   Visualization version   GIF version

Theorem mpoxopn0yelv 8185
Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopn0yelv ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐾(𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem mpoxopn0yelv
StepHypRef Expression
1 mpoxopn0yelv.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
21dmmpossx 8039 . . . 4 dom 𝐹 𝑥 ∈ V ({𝑥} × (1st𝑥))
3 elfvdm 6918 . . . . 5 (𝑁 ∈ (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹)
4 df-ov 7399 . . . . 5 (⟨𝑉, 𝑊𝐹𝐾) = (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩)
53, 4eleq2s 2852 . . . 4 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹)
62, 5sselid 3978 . . 3 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)))
7 fveq2 6881 . . . . 5 (𝑥 = ⟨𝑉, 𝑊⟩ → (1st𝑥) = (1st ‘⟨𝑉, 𝑊⟩))
87opeliunxp2 5833 . . . 4 (⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) ↔ (⟨𝑉, 𝑊⟩ ∈ V ∧ 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩)))
98simprbi 498 . . 3 (⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) → 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩))
106, 9syl 17 . 2 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩))
11 op1stg 7974 . . 3 ((𝑉𝑋𝑊𝑌) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉)
1211eleq2d 2820 . 2 ((𝑉𝑋𝑊𝑌) → (𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩) ↔ 𝐾𝑉))
1310, 12imbitrid 243 1 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  {csn 4624  cop 4630   ciun 4993   × cxp 5670  dom cdm 5672  cfv 6535  (class class class)co 7396  cmpo 7398  1st c1st 7960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6487  df-fun 6537  df-fv 6543  df-ov 7399  df-oprab 7400  df-mpo 7401  df-1st 7962  df-2nd 7963
This theorem is referenced by:  mpoxopynvov0g  8186  mpoxopovel  8192
  Copyright terms: Public domain W3C validator