![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoxopn0yelv | Structured version Visualization version GIF version |
Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
Ref | Expression |
---|---|
mpoxopn0yelv | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) → 𝐾 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpoxopn0yelv.f | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
2 | 1 | dmmpossx 8002 | . . . 4 ⊢ dom 𝐹 ⊆ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) |
3 | elfvdm 6883 | . . . . 5 ⊢ (𝑁 ∈ (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹) | |
4 | df-ov 7364 | . . . . 5 ⊢ (⟨𝑉, 𝑊⟩𝐹𝐾) = (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩) | |
5 | 3, 4 | eleq2s 2852 | . . . 4 ⊢ (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹) |
6 | 2, 5 | sselid 3946 | . . 3 ⊢ (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥))) |
7 | fveq2 6846 | . . . . 5 ⊢ (𝑥 = ⟨𝑉, 𝑊⟩ → (1st ‘𝑥) = (1st ‘⟨𝑉, 𝑊⟩)) | |
8 | 7 | opeliunxp2 5798 | . . . 4 ⊢ (⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) ↔ (⟨𝑉, 𝑊⟩ ∈ V ∧ 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩))) |
9 | 8 | simprbi 498 | . . 3 ⊢ (⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ ∪ 𝑥 ∈ V ({𝑥} × (1st ‘𝑥)) → 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩)) |
10 | 6, 9 | syl 17 | . 2 ⊢ (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) → 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩)) |
11 | op1stg 7937 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉) | |
12 | 11 | eleq2d 2820 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩) ↔ 𝐾 ∈ 𝑉)) |
13 | 10, 12 | imbitrid 243 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊⟩𝐹𝐾) → 𝐾 ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3447 {csn 4590 ⟨cop 4596 ∪ ciun 4958 × cxp 5635 dom cdm 5637 ‘cfv 6500 (class class class)co 7361 ∈ cmpo 7363 1st c1st 7923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-iota 6452 df-fun 6502 df-fv 6508 df-ov 7364 df-oprab 7365 df-mpo 7366 df-1st 7925 df-2nd 7926 |
This theorem is referenced by: mpoxopynvov0g 8149 mpoxopovel 8155 |
Copyright terms: Public domain | W3C validator |