MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopn0yelv Structured version   Visualization version   GIF version

Theorem mpoxopn0yelv 8198
Description: If there is an element of the value of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument, then the second argument is an element of the first component of the first argument. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopn0yelv ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐾(𝑦)   𝑁(𝑥,𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem mpoxopn0yelv
StepHypRef Expression
1 mpoxopn0yelv.f . . . . 5 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
21dmmpossx 8052 . . . 4 dom 𝐹 𝑥 ∈ V ({𝑥} × (1st𝑥))
3 elfvdm 6929 . . . . 5 (𝑁 ∈ (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹)
4 df-ov 7412 . . . . 5 (⟨𝑉, 𝑊𝐹𝐾) = (𝐹‘⟨⟨𝑉, 𝑊⟩, 𝐾⟩)
53, 4eleq2s 2852 . . . 4 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ dom 𝐹)
62, 5sselid 3981 . . 3 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)))
7 fveq2 6892 . . . . 5 (𝑥 = ⟨𝑉, 𝑊⟩ → (1st𝑥) = (1st ‘⟨𝑉, 𝑊⟩))
87opeliunxp2 5839 . . . 4 (⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) ↔ (⟨𝑉, 𝑊⟩ ∈ V ∧ 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩)))
98simprbi 498 . . 3 (⟨⟨𝑉, 𝑊⟩, 𝐾⟩ ∈ 𝑥 ∈ V ({𝑥} × (1st𝑥)) → 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩))
106, 9syl 17 . 2 (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩))
11 op1stg 7987 . . 3 ((𝑉𝑋𝑊𝑌) → (1st ‘⟨𝑉, 𝑊⟩) = 𝑉)
1211eleq2d 2820 . 2 ((𝑉𝑋𝑊𝑌) → (𝐾 ∈ (1st ‘⟨𝑉, 𝑊⟩) ↔ 𝐾𝑉))
1310, 12imbitrid 243 1 ((𝑉𝑋𝑊𝑌) → (𝑁 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  {csn 4629  cop 4635   ciun 4998   × cxp 5675  dom cdm 5677  cfv 6544  (class class class)co 7409  cmpo 7411  1st c1st 7973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976
This theorem is referenced by:  mpoxopynvov0g  8199  mpoxopovel  8205
  Copyright terms: Public domain W3C validator