| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolnelln | Structured version Visualization version GIF version | ||
| Description: No lattice volume is a lattice line. (Contributed by NM, 15-Jul-2012.) |
| Ref | Expression |
|---|---|
| lvolnelln.l | ⊢ 𝑁 = (LLines‘𝐾) |
| lvolnelln.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| lvolnelln | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → ¬ 𝑋 ∈ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39346 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | lvolnelln.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
| 4 | 2, 3 | lvolbase 39561 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 6 | 2, 5 | latref 18347 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋) |
| 7 | 1, 4, 6 | syl2an 596 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → 𝑋(le‘𝐾)𝑋) |
| 8 | lvolnelln.l | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
| 9 | 5, 8, 3 | lvolnlelln 39567 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋(le‘𝐾)𝑋) |
| 10 | 9 | 3expia 1121 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑁 → ¬ 𝑋(le‘𝐾)𝑋)) |
| 11 | 7, 10 | mt2d 136 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → ¬ 𝑋 ∈ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 lecple 17168 Latclat 18337 HLchlt 39333 LLinesclln 39474 LVolsclvol 39476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-lat 18338 df-clat 18405 df-oposet 39159 df-ol 39161 df-oml 39162 df-covers 39249 df-ats 39250 df-atl 39281 df-cvlat 39305 df-hlat 39334 df-llines 39481 df-lplanes 39482 df-lvols 39483 |
| This theorem is referenced by: lplncvrlvol 39599 |
| Copyright terms: Public domain | W3C validator |