![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemntlpq | Structured version Visualization version GIF version |
Description: Lemma for 4atexlem7 39548. (Contributed by NM, 24-Nov-2012.) |
Ref | Expression |
---|---|
4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
4thatlem0.l | ⊢ ≤ = (le‘𝐾) |
4thatlem0.j | ⊢ ∨ = (join‘𝐾) |
4thatlem0.m | ⊢ ∧ = (meet‘𝐾) |
4thatlem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
4thatlem0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
4thatlem0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
4thatlem0.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
Ref | Expression |
---|---|
4atexlemntlpq | ⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatlem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
2 | 4thatlem0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | 4thatlem0.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | 4thatlem0.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
5 | 4thatlem0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4thatlem0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | 4thatlem0.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
8 | 4thatlem0.v | . . 3 ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemtlw 39540 | . 2 ⊢ (𝜑 → 𝑇 ≤ 𝑊) |
10 | 1 | 4atexlemkc 39531 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ CvLat) |
11 | 1, 2, 3, 4, 5, 6, 7 | 4atexlemu 39537 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
12 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemv 39538 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ 𝐴) |
13 | 1 | 4atexlemt 39526 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
14 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemunv 39539 | . . . . . 6 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
15 | 1 | 4atexlemutvt 39527 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
16 | 5, 3 | cvlsupr5 38818 | . . . . . 6 ⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ≠ 𝑉 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) → 𝑇 ≠ 𝑈) |
17 | 10, 11, 12, 13, 14, 15, 16 | syl132anc 1386 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 𝑈) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≠ 𝑈) |
19 | 1 | 4atexlemk 39520 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ HL) |
20 | 1 | 4atexlemw 39521 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
21 | 19, 20 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
23 | 1 | 4atexlempw 39522 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
25 | 1 | 4atexlemq 39524 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
27 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ∈ 𝐴) |
28 | 1 | 4atexlempnq 39528 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
30 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≤ (𝑃 ∨ 𝑄)) | |
31 | 2, 3, 4, 5, 6, 7 | lhpat3 39519 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) → (¬ 𝑇 ≤ 𝑊 ↔ 𝑇 ≠ 𝑈)) |
32 | 22, 24, 26, 27, 29, 30, 31 | syl222anc 1384 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑇 ≤ 𝑊 ↔ 𝑇 ≠ 𝑈)) |
33 | 18, 32 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑇 ≤ 𝑊) |
34 | 33 | ex 412 | . 2 ⊢ (𝜑 → (𝑇 ≤ (𝑃 ∨ 𝑄) → ¬ 𝑇 ≤ 𝑊)) |
35 | 9, 34 | mt2d 136 | 1 ⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 lecple 17240 joincjn 18303 meetcmee 18304 Atomscatm 38735 CvLatclc 38737 HLchlt 38822 LHypclh 39457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-proset 18287 df-poset 18305 df-plt 18322 df-lub 18338 df-glb 18339 df-join 18340 df-meet 18341 df-p0 18417 df-p1 18418 df-lat 18424 df-clat 18491 df-oposet 38648 df-ol 38650 df-oml 38651 df-covers 38738 df-ats 38739 df-atl 38770 df-cvlat 38794 df-hlat 38823 df-lhyp 39461 |
This theorem is referenced by: 4atexlemc 39542 4atexlemex2 39544 4atexlemcnd 39545 |
Copyright terms: Public domain | W3C validator |