Step | Hyp | Ref
| Expression |
1 | | 4thatlem.ph |
. . 3
β’ (π β (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ (π
β π΄ β§ Β¬ π
β€ π β§ (π β¨ π
) = (π β¨ π
)) β§ (π β π΄ β§ (π β¨ π) = (π β¨ π))) β§ (π β π β§ Β¬ π β€ (π β¨ π)))) |
2 | | 4thatlem0.l |
. . 3
β’ β€ =
(leβπΎ) |
3 | | 4thatlem0.j |
. . 3
β’ β¨ =
(joinβπΎ) |
4 | | 4thatlem0.m |
. . 3
β’ β§ =
(meetβπΎ) |
5 | | 4thatlem0.a |
. . 3
β’ π΄ = (AtomsβπΎ) |
6 | | 4thatlem0.h |
. . 3
β’ π» = (LHypβπΎ) |
7 | | 4thatlem0.u |
. . 3
β’ π = ((π β¨ π) β§ π) |
8 | | 4thatlem0.v |
. . 3
β’ π = ((π β¨ π) β§ π) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemtlw 39428 |
. 2
β’ (π β π β€ π) |
10 | 1 | 4atexlemkc 39419 |
. . . . . 6
β’ (π β πΎ β CvLat) |
11 | 1, 2, 3, 4, 5, 6, 7 | 4atexlemu 39425 |
. . . . . 6
β’ (π β π β π΄) |
12 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemv 39426 |
. . . . . 6
β’ (π β π β π΄) |
13 | 1 | 4atexlemt 39414 |
. . . . . 6
β’ (π β π β π΄) |
14 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemunv 39427 |
. . . . . 6
β’ (π β π β π) |
15 | 1 | 4atexlemutvt 39415 |
. . . . . 6
β’ (π β (π β¨ π) = (π β¨ π)) |
16 | 5, 3 | cvlsupr5 38706 |
. . . . . 6
β’ ((πΎ β CvLat β§ (π β π΄ β§ π β π΄ β§ π β π΄) β§ (π β π β§ (π β¨ π) = (π β¨ π))) β π β π) |
17 | 10, 11, 12, 13, 14, 15, 16 | syl132anc 1385 |
. . . . 5
β’ (π β π β π) |
18 | 17 | adantr 480 |
. . . 4
β’ ((π β§ π β€ (π β¨ π)) β π β π) |
19 | 1 | 4atexlemk 39408 |
. . . . . . 7
β’ (π β πΎ β HL) |
20 | 1 | 4atexlemw 39409 |
. . . . . . 7
β’ (π β π β π») |
21 | 19, 20 | jca 511 |
. . . . . 6
β’ (π β (πΎ β HL β§ π β π»)) |
22 | 21 | adantr 480 |
. . . . 5
β’ ((π β§ π β€ (π β¨ π)) β (πΎ β HL β§ π β π»)) |
23 | 1 | 4atexlempw 39410 |
. . . . . 6
β’ (π β (π β π΄ β§ Β¬ π β€ π)) |
24 | 23 | adantr 480 |
. . . . 5
β’ ((π β§ π β€ (π β¨ π)) β (π β π΄ β§ Β¬ π β€ π)) |
25 | 1 | 4atexlemq 39412 |
. . . . . 6
β’ (π β π β π΄) |
26 | 25 | adantr 480 |
. . . . 5
β’ ((π β§ π β€ (π β¨ π)) β π β π΄) |
27 | 13 | adantr 480 |
. . . . 5
β’ ((π β§ π β€ (π β¨ π)) β π β π΄) |
28 | 1 | 4atexlempnq 39416 |
. . . . . 6
β’ (π β π β π) |
29 | 28 | adantr 480 |
. . . . 5
β’ ((π β§ π β€ (π β¨ π)) β π β π) |
30 | | simpr 484 |
. . . . 5
β’ ((π β§ π β€ (π β¨ π)) β π β€ (π β¨ π)) |
31 | 2, 3, 4, 5, 6, 7 | lhpat3 39407 |
. . . . 5
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π΄ β§ π β π΄) β§ (π β π β§ π β€ (π β¨ π))) β (Β¬ π β€ π β π β π)) |
32 | 22, 24, 26, 27, 29, 30, 31 | syl222anc 1383 |
. . . 4
β’ ((π β§ π β€ (π β¨ π)) β (Β¬ π β€ π β π β π)) |
33 | 18, 32 | mpbird 257 |
. . 3
β’ ((π β§ π β€ (π β¨ π)) β Β¬ π β€ π) |
34 | 33 | ex 412 |
. 2
β’ (π β (π β€ (π β¨ π) β Β¬ π β€ π)) |
35 | 9, 34 | mt2d 136 |
1
β’ (π β Β¬ π β€ (π β¨ π)) |