Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemntlpq Structured version   Visualization version   GIF version

Theorem 4atexlemntlpq 40071
Description: Lemma for 4atexlem7 40078. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
4atexlemntlpq (𝜑 → ¬ 𝑇 (𝑃 𝑄))

Proof of Theorem 4atexlemntlpq
StepHypRef Expression
1 4thatlem.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 4thatlem0.l . . 3 = (le‘𝐾)
3 4thatlem0.j . . 3 = (join‘𝐾)
4 4thatlem0.m . . 3 = (meet‘𝐾)
5 4thatlem0.a . . 3 𝐴 = (Atoms‘𝐾)
6 4thatlem0.h . . 3 𝐻 = (LHyp‘𝐾)
7 4thatlem0.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
8 4thatlem0.v . . 3 𝑉 = ((𝑃 𝑆) 𝑊)
91, 2, 3, 4, 5, 6, 7, 84atexlemtlw 40070 . 2 (𝜑𝑇 𝑊)
1014atexlemkc 40061 . . . . . 6 (𝜑𝐾 ∈ CvLat)
111, 2, 3, 4, 5, 6, 74atexlemu 40067 . . . . . 6 (𝜑𝑈𝐴)
121, 2, 3, 4, 5, 6, 7, 84atexlemv 40068 . . . . . 6 (𝜑𝑉𝐴)
1314atexlemt 40056 . . . . . 6 (𝜑𝑇𝐴)
141, 2, 3, 4, 5, 6, 7, 84atexlemunv 40069 . . . . . 6 (𝜑𝑈𝑉)
1514atexlemutvt 40057 . . . . . 6 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
165, 3cvlsupr5 39348 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑇𝑈)
1710, 11, 12, 13, 14, 15, 16syl132anc 1389 . . . . 5 (𝜑𝑇𝑈)
1817adantr 480 . . . 4 ((𝜑𝑇 (𝑃 𝑄)) → 𝑇𝑈)
1914atexlemk 40050 . . . . . . 7 (𝜑𝐾 ∈ HL)
2014atexlemw 40051 . . . . . . 7 (𝜑𝑊𝐻)
2119, 20jca 511 . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2221adantr 480 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2314atexlempw 40052 . . . . . 6 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2423adantr 480 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2514atexlemq 40054 . . . . . 6 (𝜑𝑄𝐴)
2625adantr 480 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → 𝑄𝐴)
2713adantr 480 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → 𝑇𝐴)
2814atexlempnq 40058 . . . . . 6 (𝜑𝑃𝑄)
2928adantr 480 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → 𝑃𝑄)
30 simpr 484 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → 𝑇 (𝑃 𝑄))
312, 3, 4, 5, 6, 7lhpat3 40049 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑇𝐴) ∧ (𝑃𝑄𝑇 (𝑃 𝑄))) → (¬ 𝑇 𝑊𝑇𝑈))
3222, 24, 26, 27, 29, 30, 31syl222anc 1387 . . . 4 ((𝜑𝑇 (𝑃 𝑄)) → (¬ 𝑇 𝑊𝑇𝑈))
3318, 32mpbird 257 . . 3 ((𝜑𝑇 (𝑃 𝑄)) → ¬ 𝑇 𝑊)
3433ex 412 . 2 (𝜑 → (𝑇 (𝑃 𝑄) → ¬ 𝑇 𝑊))
359, 34mt2d 136 1 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  cfv 6560  (class class class)co 7432  lecple 17305  joincjn 18358  meetcmee 18359  Atomscatm 39265  CvLatclc 39267  HLchlt 39352  LHypclh 39987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-lhyp 39991
This theorem is referenced by:  4atexlemc  40072  4atexlemex2  40074  4atexlemcnd  40075
  Copyright terms: Public domain W3C validator