Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemntlpq Structured version   Visualization version   GIF version

Theorem 4atexlemntlpq 38082
Description: Lemma for 4atexlem7 38089. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
Assertion
Ref Expression
4atexlemntlpq (𝜑 → ¬ 𝑇 (𝑃 𝑄))

Proof of Theorem 4atexlemntlpq
StepHypRef Expression
1 4thatlem.ph . . 3 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 4thatlem0.l . . 3 = (le‘𝐾)
3 4thatlem0.j . . 3 = (join‘𝐾)
4 4thatlem0.m . . 3 = (meet‘𝐾)
5 4thatlem0.a . . 3 𝐴 = (Atoms‘𝐾)
6 4thatlem0.h . . 3 𝐻 = (LHyp‘𝐾)
7 4thatlem0.u . . 3 𝑈 = ((𝑃 𝑄) 𝑊)
8 4thatlem0.v . . 3 𝑉 = ((𝑃 𝑆) 𝑊)
91, 2, 3, 4, 5, 6, 7, 84atexlemtlw 38081 . 2 (𝜑𝑇 𝑊)
1014atexlemkc 38072 . . . . . 6 (𝜑𝐾 ∈ CvLat)
111, 2, 3, 4, 5, 6, 74atexlemu 38078 . . . . . 6 (𝜑𝑈𝐴)
121, 2, 3, 4, 5, 6, 7, 84atexlemv 38079 . . . . . 6 (𝜑𝑉𝐴)
1314atexlemt 38067 . . . . . 6 (𝜑𝑇𝐴)
141, 2, 3, 4, 5, 6, 7, 84atexlemunv 38080 . . . . . 6 (𝜑𝑈𝑉)
1514atexlemutvt 38068 . . . . . 6 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
165, 3cvlsupr5 37360 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑇𝑈)
1710, 11, 12, 13, 14, 15, 16syl132anc 1387 . . . . 5 (𝜑𝑇𝑈)
1817adantr 481 . . . 4 ((𝜑𝑇 (𝑃 𝑄)) → 𝑇𝑈)
1914atexlemk 38061 . . . . . . 7 (𝜑𝐾 ∈ HL)
2014atexlemw 38062 . . . . . . 7 (𝜑𝑊𝐻)
2119, 20jca 512 . . . . . 6 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2221adantr 481 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2314atexlempw 38063 . . . . . 6 (𝜑 → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2423adantr 481 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
2514atexlemq 38065 . . . . . 6 (𝜑𝑄𝐴)
2625adantr 481 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → 𝑄𝐴)
2713adantr 481 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → 𝑇𝐴)
2814atexlempnq 38069 . . . . . 6 (𝜑𝑃𝑄)
2928adantr 481 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → 𝑃𝑄)
30 simpr 485 . . . . 5 ((𝜑𝑇 (𝑃 𝑄)) → 𝑇 (𝑃 𝑄))
312, 3, 4, 5, 6, 7lhpat3 38060 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) ∧ (𝑄𝐴𝑇𝐴) ∧ (𝑃𝑄𝑇 (𝑃 𝑄))) → (¬ 𝑇 𝑊𝑇𝑈))
3222, 24, 26, 27, 29, 30, 31syl222anc 1385 . . . 4 ((𝜑𝑇 (𝑃 𝑄)) → (¬ 𝑇 𝑊𝑇𝑈))
3318, 32mpbird 256 . . 3 ((𝜑𝑇 (𝑃 𝑄)) → ¬ 𝑇 𝑊)
3433ex 413 . 2 (𝜑 → (𝑇 (𝑃 𝑄) → ¬ 𝑇 𝑊))
359, 34mt2d 136 1 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  lecple 16969  joincjn 18029  meetcmee 18030  Atomscatm 37277  CvLatclc 37279  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-lhyp 38002
This theorem is referenced by:  4atexlemc  38083  4atexlemex2  38085  4atexlemcnd  38086
  Copyright terms: Public domain W3C validator