| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemntlpq | Structured version Visualization version GIF version | ||
| Description: Lemma for 4atexlem7 40078. (Contributed by NM, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| 4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
| 4thatlem0.l | ⊢ ≤ = (le‘𝐾) |
| 4thatlem0.j | ⊢ ∨ = (join‘𝐾) |
| 4thatlem0.m | ⊢ ∧ = (meet‘𝐾) |
| 4thatlem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 4thatlem0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| 4thatlem0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 4thatlem0.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
| Ref | Expression |
|---|---|
| 4atexlemntlpq | ⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4thatlem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
| 2 | 4thatlem0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 3 | 4thatlem0.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 4 | 4thatlem0.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 5 | 4thatlem0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 4thatlem0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 7 | 4thatlem0.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 8 | 4thatlem0.v | . . 3 ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemtlw 40070 | . 2 ⊢ (𝜑 → 𝑇 ≤ 𝑊) |
| 10 | 1 | 4atexlemkc 40061 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ CvLat) |
| 11 | 1, 2, 3, 4, 5, 6, 7 | 4atexlemu 40067 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemv 40068 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ 𝐴) |
| 13 | 1 | 4atexlemt 40056 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
| 14 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemunv 40069 | . . . . . 6 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
| 15 | 1 | 4atexlemutvt 40057 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
| 16 | 5, 3 | cvlsupr5 39348 | . . . . . 6 ⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ≠ 𝑉 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) → 𝑇 ≠ 𝑈) |
| 17 | 10, 11, 12, 13, 14, 15, 16 | syl132anc 1389 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 𝑈) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≠ 𝑈) |
| 19 | 1 | 4atexlemk 40050 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 20 | 1 | 4atexlemw 40051 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
| 21 | 19, 20 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 23 | 1 | 4atexlempw 40052 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 25 | 1 | 4atexlemq 40054 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| 26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
| 27 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ∈ 𝐴) |
| 28 | 1 | 4atexlempnq 40058 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| 29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
| 30 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≤ (𝑃 ∨ 𝑄)) | |
| 31 | 2, 3, 4, 5, 6, 7 | lhpat3 40049 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) → (¬ 𝑇 ≤ 𝑊 ↔ 𝑇 ≠ 𝑈)) |
| 32 | 22, 24, 26, 27, 29, 30, 31 | syl222anc 1387 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑇 ≤ 𝑊 ↔ 𝑇 ≠ 𝑈)) |
| 33 | 18, 32 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑇 ≤ 𝑊) |
| 34 | 33 | ex 412 | . 2 ⊢ (𝜑 → (𝑇 ≤ (𝑃 ∨ 𝑄) → ¬ 𝑇 ≤ 𝑊)) |
| 35 | 9, 34 | mt2d 136 | 1 ⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 lecple 17305 joincjn 18358 meetcmee 18359 Atomscatm 39265 CvLatclc 39267 HLchlt 39352 LHypclh 39987 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-lhyp 39991 |
| This theorem is referenced by: 4atexlemc 40072 4atexlemex2 40074 4atexlemcnd 40075 |
| Copyright terms: Public domain | W3C validator |