Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemntlpq Structured version   Visualization version   GIF version

Theorem 4atexlemntlpq 39429
Description: Lemma for 4atexlem7 39436. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
4thatlem0.l ≀ = (leβ€˜πΎ)
4thatlem0.j ∨ = (joinβ€˜πΎ)
4thatlem0.m ∧ = (meetβ€˜πΎ)
4thatlem0.a 𝐴 = (Atomsβ€˜πΎ)
4thatlem0.h 𝐻 = (LHypβ€˜πΎ)
4thatlem0.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
4thatlem0.v 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
Assertion
Ref Expression
4atexlemntlpq (πœ‘ β†’ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))

Proof of Theorem 4atexlemntlpq
StepHypRef Expression
1 4thatlem.ph . . 3 (πœ‘ ↔ (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ Β¬ 𝑅 ≀ π‘Š ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑆 ≀ (𝑃 ∨ 𝑄))))
2 4thatlem0.l . . 3 ≀ = (leβ€˜πΎ)
3 4thatlem0.j . . 3 ∨ = (joinβ€˜πΎ)
4 4thatlem0.m . . 3 ∧ = (meetβ€˜πΎ)
5 4thatlem0.a . . 3 𝐴 = (Atomsβ€˜πΎ)
6 4thatlem0.h . . 3 𝐻 = (LHypβ€˜πΎ)
7 4thatlem0.u . . 3 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
8 4thatlem0.v . . 3 𝑉 = ((𝑃 ∨ 𝑆) ∧ π‘Š)
91, 2, 3, 4, 5, 6, 7, 84atexlemtlw 39428 . 2 (πœ‘ β†’ 𝑇 ≀ π‘Š)
1014atexlemkc 39419 . . . . . 6 (πœ‘ β†’ 𝐾 ∈ CvLat)
111, 2, 3, 4, 5, 6, 74atexlemu 39425 . . . . . 6 (πœ‘ β†’ π‘ˆ ∈ 𝐴)
121, 2, 3, 4, 5, 6, 7, 84atexlemv 39426 . . . . . 6 (πœ‘ β†’ 𝑉 ∈ 𝐴)
1314atexlemt 39414 . . . . . 6 (πœ‘ β†’ 𝑇 ∈ 𝐴)
141, 2, 3, 4, 5, 6, 7, 84atexlemunv 39427 . . . . . 6 (πœ‘ β†’ π‘ˆ β‰  𝑉)
1514atexlemutvt 39415 . . . . . 6 (πœ‘ β†’ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))
165, 3cvlsupr5 38706 . . . . . 6 ((𝐾 ∈ CvLat ∧ (π‘ˆ ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (π‘ˆ β‰  𝑉 ∧ (π‘ˆ ∨ 𝑇) = (𝑉 ∨ 𝑇))) β†’ 𝑇 β‰  π‘ˆ)
1710, 11, 12, 13, 14, 15, 16syl132anc 1385 . . . . 5 (πœ‘ β†’ 𝑇 β‰  π‘ˆ)
1817adantr 480 . . . 4 ((πœ‘ ∧ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑇 β‰  π‘ˆ)
1914atexlemk 39408 . . . . . . 7 (πœ‘ β†’ 𝐾 ∈ HL)
2014atexlemw 39409 . . . . . . 7 (πœ‘ β†’ π‘Š ∈ 𝐻)
2119, 20jca 511 . . . . . 6 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2221adantr 480 . . . . 5 ((πœ‘ ∧ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2314atexlempw 39410 . . . . . 6 (πœ‘ β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
2423adantr 480 . . . . 5 ((πœ‘ ∧ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
2514atexlemq 39412 . . . . . 6 (πœ‘ β†’ 𝑄 ∈ 𝐴)
2625adantr 480 . . . . 5 ((πœ‘ ∧ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑄 ∈ 𝐴)
2713adantr 480 . . . . 5 ((πœ‘ ∧ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑇 ∈ 𝐴)
2814atexlempnq 39416 . . . . . 6 (πœ‘ β†’ 𝑃 β‰  𝑄)
2928adantr 480 . . . . 5 ((πœ‘ ∧ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑃 β‰  𝑄)
30 simpr 484 . . . . 5 ((πœ‘ ∧ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑇 ≀ (𝑃 ∨ 𝑄))
312, 3, 4, 5, 6, 7lhpat3 39407 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑃 β‰  𝑄 ∧ 𝑇 ≀ (𝑃 ∨ 𝑄))) β†’ (Β¬ 𝑇 ≀ π‘Š ↔ 𝑇 β‰  π‘ˆ))
3222, 24, 26, 27, 29, 30, 31syl222anc 1383 . . . 4 ((πœ‘ ∧ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ (Β¬ 𝑇 ≀ π‘Š ↔ 𝑇 β‰  π‘ˆ))
3318, 32mpbird 257 . . 3 ((πœ‘ ∧ 𝑇 ≀ (𝑃 ∨ 𝑄)) β†’ Β¬ 𝑇 ≀ π‘Š)
3433ex 412 . 2 (πœ‘ β†’ (𝑇 ≀ (𝑃 ∨ 𝑄) β†’ Β¬ 𝑇 ≀ π‘Š))
359, 34mt2d 136 1 (πœ‘ β†’ Β¬ 𝑇 ≀ (𝑃 ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2932   class class class wbr 5138  β€˜cfv 6533  (class class class)co 7401  lecple 17203  joincjn 18266  meetcmee 18267  Atomscatm 38623  CvLatclc 38625  HLchlt 38710  LHypclh 39345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-proset 18250  df-poset 18268  df-plt 18285  df-lub 18301  df-glb 18302  df-join 18303  df-meet 18304  df-p0 18380  df-p1 18381  df-lat 18387  df-clat 18454  df-oposet 38536  df-ol 38538  df-oml 38539  df-covers 38626  df-ats 38627  df-atl 38658  df-cvlat 38682  df-hlat 38711  df-lhyp 39349
This theorem is referenced by:  4atexlemc  39430  4atexlemex2  39432  4atexlemcnd  39433
  Copyright terms: Public domain W3C validator