![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlemntlpq | Structured version Visualization version GIF version |
Description: Lemma for 4atexlem7 40032. (Contributed by NM, 24-Nov-2012.) |
Ref | Expression |
---|---|
4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
4thatlem0.l | ⊢ ≤ = (le‘𝐾) |
4thatlem0.j | ⊢ ∨ = (join‘𝐾) |
4thatlem0.m | ⊢ ∧ = (meet‘𝐾) |
4thatlem0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
4thatlem0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
4thatlem0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
4thatlem0.v | ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
Ref | Expression |
---|---|
4atexlemntlpq | ⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatlem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
2 | 4thatlem0.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | 4thatlem0.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | 4thatlem0.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
5 | 4thatlem0.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4thatlem0.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
7 | 4thatlem0.u | . . 3 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
8 | 4thatlem0.v | . . 3 ⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemtlw 40024 | . 2 ⊢ (𝜑 → 𝑇 ≤ 𝑊) |
10 | 1 | 4atexlemkc 40015 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ CvLat) |
11 | 1, 2, 3, 4, 5, 6, 7 | 4atexlemu 40021 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
12 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemv 40022 | . . . . . 6 ⊢ (𝜑 → 𝑉 ∈ 𝐴) |
13 | 1 | 4atexlemt 40010 | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ 𝐴) |
14 | 1, 2, 3, 4, 5, 6, 7, 8 | 4atexlemunv 40023 | . . . . . 6 ⊢ (𝜑 → 𝑈 ≠ 𝑉) |
15 | 1 | 4atexlemutvt 40011 | . . . . . 6 ⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
16 | 5, 3 | cvlsupr5 39302 | . . . . . 6 ⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ≠ 𝑉 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) → 𝑇 ≠ 𝑈) |
17 | 10, 11, 12, 13, 14, 15, 16 | syl132anc 1388 | . . . . 5 ⊢ (𝜑 → 𝑇 ≠ 𝑈) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≠ 𝑈) |
19 | 1 | 4atexlemk 40004 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ HL) |
20 | 1 | 4atexlemw 40005 | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ 𝐻) |
21 | 19, 20 | jca 511 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | 21 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
23 | 1 | 4atexlempw 40006 | . . . . . 6 ⊢ (𝜑 → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
24 | 23 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
25 | 1 | 4atexlemq 40008 | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
26 | 25 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ∈ 𝐴) |
27 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ∈ 𝐴) |
28 | 1 | 4atexlempnq 40012 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
29 | 28 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑄) |
30 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≤ (𝑃 ∨ 𝑄)) | |
31 | 2, 3, 4, 5, 6, 7 | lhpat3 40003 | . . . . 5 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄))) → (¬ 𝑇 ≤ 𝑊 ↔ 𝑇 ≠ 𝑈)) |
32 | 22, 24, 26, 27, 29, 30, 31 | syl222anc 1386 | . . . 4 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (¬ 𝑇 ≤ 𝑊 ↔ 𝑇 ≠ 𝑈)) |
33 | 18, 32 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ 𝑇 ≤ (𝑃 ∨ 𝑄)) → ¬ 𝑇 ≤ 𝑊) |
34 | 33 | ex 412 | . 2 ⊢ (𝜑 → (𝑇 ≤ (𝑃 ∨ 𝑄) → ¬ 𝑇 ≤ 𝑊)) |
35 | 9, 34 | mt2d 136 | 1 ⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 lecple 17318 joincjn 18381 meetcmee 18382 Atomscatm 39219 CvLatclc 39221 HLchlt 39306 LHypclh 39941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-lhyp 39945 |
This theorem is referenced by: 4atexlemc 40026 4atexlemex2 40028 4atexlemcnd 40029 |
Copyright terms: Public domain | W3C validator |