| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomdomtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| sdomdomtr | ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom 8929 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | domtr 8956 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| 4 | simpl 482 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐵) | |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐵 ≼ 𝐶) | |
| 6 | ensym 8952 | . . . . . 6 ⊢ (𝐴 ≈ 𝐶 → 𝐶 ≈ 𝐴) | |
| 7 | domentr 8962 | . . . . . 6 ⊢ ((𝐵 ≼ 𝐶 ∧ 𝐶 ≈ 𝐴) → 𝐵 ≼ 𝐴) | |
| 8 | 5, 6, 7 | syl2an 596 | . . . . 5 ⊢ (((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) ∧ 𝐴 ≈ 𝐶) → 𝐵 ≼ 𝐴) |
| 9 | domnsym 9045 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) ∧ 𝐴 ≈ 𝐶) → ¬ 𝐴 ≺ 𝐵) |
| 11 | 10 | ex 412 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐴 ≺ 𝐵)) |
| 12 | 4, 11 | mt2d 136 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
| 13 | brsdom 8924 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
| 14 | 3, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 class class class wbr 5102 ≈ cen 8893 ≼ cdom 8894 ≺ csdm 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-er 8649 df-en 8897 df-dom 8898 df-sdom 8899 |
| This theorem is referenced by: sdomentr 9053 infsdomnnOLD 9227 fodomfibOLD 9259 marypha1lem 9361 r1sdom 9706 infxpenlem 9945 infunsdom1 10144 fin56 10325 fodomb 10458 pwcfsdom 10515 cfpwsdom 10516 canthp1lem2 10585 gchpwdom 10602 gchhar 10611 gchina 10631 tsksdom 10688 tskpr 10702 tskcard 10713 gruina 10750 domalom 37387 lindsenlbs 37604 |
| Copyright terms: Public domain | W3C validator |