MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdomtr Structured version   Visualization version   GIF version

Theorem sdomdomtr 8846
Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
sdomdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomdomtr
StepHypRef Expression
1 sdomdom 8723 . . 3 (𝐴𝐵𝐴𝐵)
2 domtr 8748 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan 579 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simpl 482 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
5 simpr 484 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
6 ensym 8744 . . . . . 6 (𝐴𝐶𝐶𝐴)
7 domentr 8754 . . . . . 6 ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)
85, 6, 7syl2an 595 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → 𝐵𝐴)
9 domnsym 8839 . . . . 5 (𝐵𝐴 → ¬ 𝐴𝐵)
108, 9syl 17 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → ¬ 𝐴𝐵)
1110ex 412 . . 3 ((𝐴𝐵𝐵𝐶) → (𝐴𝐶 → ¬ 𝐴𝐵))
124, 11mt2d 136 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
13 brsdom 8718 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
143, 12, 13sylanbrc 582 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   class class class wbr 5070  cen 8688  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by:  sdomentr  8847  sucdom  8949  infsdomnn  9005  fodomfib  9023  marypha1lem  9122  r1sdom  9463  infxpenlem  9700  infunsdom1  9900  fin56  10080  fodomb  10213  pwcfsdom  10270  cfpwsdom  10271  canthp1lem2  10340  gchpwdom  10357  gchhar  10366  gchina  10386  tsksdom  10443  tskpr  10457  tskcard  10468  gruina  10505  domalom  35502  lindsenlbs  35699
  Copyright terms: Public domain W3C validator