MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdomtr Structured version   Visualization version   GIF version

Theorem sdomdomtr 9176
Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
sdomdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomdomtr
StepHypRef Expression
1 sdomdom 9040 . . 3 (𝐴𝐵𝐴𝐵)
2 domtr 9067 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan 579 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simpl 482 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
5 simpr 484 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
6 ensym 9063 . . . . . 6 (𝐴𝐶𝐶𝐴)
7 domentr 9073 . . . . . 6 ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)
85, 6, 7syl2an 595 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → 𝐵𝐴)
9 domnsym 9165 . . . . 5 (𝐵𝐴 → ¬ 𝐴𝐵)
108, 9syl 17 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → ¬ 𝐴𝐵)
1110ex 412 . . 3 ((𝐴𝐵𝐵𝐶) → (𝐴𝐶 → ¬ 𝐴𝐵))
124, 11mt2d 136 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
13 brsdom 9035 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
143, 12, 13sylanbrc 582 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   class class class wbr 5166  cen 9000  cdom 9001  csdm 9002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006
This theorem is referenced by:  sdomentr  9177  sucdomOLD  9299  infsdomnnOLD  9367  fodomfibOLD  9399  marypha1lem  9502  r1sdom  9843  infxpenlem  10082  infunsdom1  10281  fin56  10462  fodomb  10595  pwcfsdom  10652  cfpwsdom  10653  canthp1lem2  10722  gchpwdom  10739  gchhar  10748  gchina  10768  tsksdom  10825  tskpr  10839  tskcard  10850  gruina  10887  domalom  37370  lindsenlbs  37575
  Copyright terms: Public domain W3C validator