| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomdomtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| sdomdomtr | ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom 8951 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
| 2 | domtr 8978 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
| 4 | simpl 482 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐵) | |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐵 ≼ 𝐶) | |
| 6 | ensym 8974 | . . . . . 6 ⊢ (𝐴 ≈ 𝐶 → 𝐶 ≈ 𝐴) | |
| 7 | domentr 8984 | . . . . . 6 ⊢ ((𝐵 ≼ 𝐶 ∧ 𝐶 ≈ 𝐴) → 𝐵 ≼ 𝐴) | |
| 8 | 5, 6, 7 | syl2an 596 | . . . . 5 ⊢ (((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) ∧ 𝐴 ≈ 𝐶) → 𝐵 ≼ 𝐴) |
| 9 | domnsym 9067 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) ∧ 𝐴 ≈ 𝐶) → ¬ 𝐴 ≺ 𝐵) |
| 11 | 10 | ex 412 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐴 ≺ 𝐵)) |
| 12 | 4, 11 | mt2d 136 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
| 13 | brsdom 8946 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
| 14 | 3, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 class class class wbr 5107 ≈ cen 8915 ≼ cdom 8916 ≺ csdm 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 |
| This theorem is referenced by: sdomentr 9075 infsdomnnOLD 9250 fodomfibOLD 9282 marypha1lem 9384 r1sdom 9727 infxpenlem 9966 infunsdom1 10165 fin56 10346 fodomb 10479 pwcfsdom 10536 cfpwsdom 10537 canthp1lem2 10606 gchpwdom 10623 gchhar 10632 gchina 10652 tsksdom 10709 tskpr 10723 tskcard 10734 gruina 10771 domalom 37392 lindsenlbs 37609 |
| Copyright terms: Public domain | W3C validator |