Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomdomtr | Structured version Visualization version GIF version |
Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
sdomdomtr | ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8768 | . . 3 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domtr 8793 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) |
4 | simpl 483 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐵) | |
5 | simpr 485 | . . . . . 6 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐵 ≼ 𝐶) | |
6 | ensym 8789 | . . . . . 6 ⊢ (𝐴 ≈ 𝐶 → 𝐶 ≈ 𝐴) | |
7 | domentr 8799 | . . . . . 6 ⊢ ((𝐵 ≼ 𝐶 ∧ 𝐶 ≈ 𝐴) → 𝐵 ≼ 𝐴) | |
8 | 5, 6, 7 | syl2an 596 | . . . . 5 ⊢ (((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) ∧ 𝐴 ≈ 𝐶) → 𝐵 ≼ 𝐴) |
9 | domnsym 8886 | . . . . 5 ⊢ (𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) ∧ 𝐴 ≈ 𝐶) → ¬ 𝐴 ≺ 𝐵) |
11 | 10 | ex 413 | . . 3 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐴 ≺ 𝐵)) |
12 | 4, 11 | mt2d 136 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
13 | brsdom 8763 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
14 | 3, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 class class class wbr 5074 ≈ cen 8730 ≼ cdom 8731 ≺ csdm 8732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 |
This theorem is referenced by: sdomentr 8898 sucdomOLD 9019 infsdomnn 9075 fodomfib 9093 marypha1lem 9192 r1sdom 9532 infxpenlem 9769 infunsdom1 9969 fin56 10149 fodomb 10282 pwcfsdom 10339 cfpwsdom 10340 canthp1lem2 10409 gchpwdom 10426 gchhar 10435 gchina 10455 tsksdom 10512 tskpr 10526 tskcard 10537 gruina 10574 domalom 35575 lindsenlbs 35772 |
Copyright terms: Public domain | W3C validator |