MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdomtr Structured version   Visualization version   GIF version

Theorem sdomdomtr 9151
Description: Transitivity of strict dominance and dominance. Theorem 22(iii) of [Suppes] p. 97. (Contributed by NM, 26-Oct-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
sdomdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomdomtr
StepHypRef Expression
1 sdomdom 9021 . . 3 (𝐴𝐵𝐴𝐵)
2 domtr 9048 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan 580 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simpl 482 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
5 simpr 484 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
6 ensym 9044 . . . . . 6 (𝐴𝐶𝐶𝐴)
7 domentr 9054 . . . . . 6 ((𝐵𝐶𝐶𝐴) → 𝐵𝐴)
85, 6, 7syl2an 596 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → 𝐵𝐴)
9 domnsym 9140 . . . . 5 (𝐵𝐴 → ¬ 𝐴𝐵)
108, 9syl 17 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → ¬ 𝐴𝐵)
1110ex 412 . . 3 ((𝐴𝐵𝐵𝐶) → (𝐴𝐶 → ¬ 𝐴𝐵))
124, 11mt2d 136 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
13 brsdom 9016 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
143, 12, 13sylanbrc 583 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   class class class wbr 5142  cen 8983  cdom 8984  csdm 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989
This theorem is referenced by:  sdomentr  9152  sucdomOLD  9273  infsdomnnOLD  9340  fodomfibOLD  9372  marypha1lem  9474  r1sdom  9815  infxpenlem  10054  infunsdom1  10253  fin56  10434  fodomb  10567  pwcfsdom  10624  cfpwsdom  10625  canthp1lem2  10694  gchpwdom  10711  gchhar  10720  gchina  10740  tsksdom  10797  tskpr  10811  tskcard  10822  gruina  10859  domalom  37406  lindsenlbs  37623
  Copyright terms: Public domain W3C validator