Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnneat Structured version   Visualization version   GIF version

Theorem lplnneat 36126
Description: No lattice plane is an atom. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
lplnneat.a 𝐴 = (Atoms‘𝐾)
lplnneat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnneat ((𝐾 ∈ HL ∧ 𝑋𝑃) → ¬ 𝑋𝐴)

Proof of Theorem lplnneat
StepHypRef Expression
1 hllat 35944 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 eqid 2778 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 lplnneat.p . . . 4 𝑃 = (LPlanes‘𝐾)
42, 3lplnbase 36115 . . 3 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
5 eqid 2778 . . . 4 (le‘𝐾) = (le‘𝐾)
62, 5latref 17524 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋)
71, 4, 6syl2an 586 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃) → 𝑋(le‘𝐾)𝑋)
8 lplnneat.a . . . 4 𝐴 = (Atoms‘𝐾)
95, 8, 3lplnnleat 36123 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑋𝐴) → ¬ 𝑋(le‘𝐾)𝑋)
1093expia 1101 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑋𝐴 → ¬ 𝑋(le‘𝐾)𝑋))
117, 10mt2d 134 1 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ¬ 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2050   class class class wbr 4930  cfv 6190  Basecbs 16342  lecple 16431  Latclat 17516  Atomscatm 35844  HLchlt 35931  LPlanesclpl 36073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-id 5313  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-proset 17399  df-poset 17417  df-plt 17429  df-lub 17445  df-glb 17446  df-join 17447  df-meet 17448  df-p0 17510  df-lat 17517  df-clat 17579  df-oposet 35757  df-ol 35759  df-oml 35760  df-covers 35847  df-ats 35848  df-atl 35879  df-cvlat 35903  df-hlat 35932  df-llines 36079  df-lplanes 36080
This theorem is referenced by:  llncvrlpln  36139
  Copyright terms: Public domain W3C validator