Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnneat Structured version   Visualization version   GIF version

Theorem lplnneat 39524
Description: No lattice plane is an atom. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
lplnneat.a 𝐴 = (Atoms‘𝐾)
lplnneat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnneat ((𝐾 ∈ HL ∧ 𝑋𝑃) → ¬ 𝑋𝐴)

Proof of Theorem lplnneat
StepHypRef Expression
1 hllat 39341 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 lplnneat.p . . . 4 𝑃 = (LPlanes‘𝐾)
42, 3lplnbase 39513 . . 3 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
5 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
62, 5latref 18365 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋)
71, 4, 6syl2an 596 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃) → 𝑋(le‘𝐾)𝑋)
8 lplnneat.a . . . 4 𝐴 = (Atoms‘𝐾)
95, 8, 3lplnnleat 39521 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑋𝐴) → ¬ 𝑋(le‘𝐾)𝑋)
1093expia 1121 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑋𝐴 → ¬ 𝑋(le‘𝐾)𝑋))
117, 10mt2d 136 1 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ¬ 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  Basecbs 17138  lecple 17186  Latclat 18355  Atomscatm 39241  HLchlt 39328  LPlanesclpl 39471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-clat 18423  df-oposet 39154  df-ol 39156  df-oml 39157  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-llines 39477  df-lplanes 39478
This theorem is referenced by:  llncvrlpln  39537
  Copyright terms: Public domain W3C validator