Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnneat Structured version   Visualization version   GIF version

Theorem lplnneat 39664
Description: No lattice plane is an atom. (Contributed by NM, 15-Jul-2012.)
Hypotheses
Ref Expression
lplnneat.a 𝐴 = (Atoms‘𝐾)
lplnneat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnneat ((𝐾 ∈ HL ∧ 𝑋𝑃) → ¬ 𝑋𝐴)

Proof of Theorem lplnneat
StepHypRef Expression
1 hllat 39482 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 eqid 2733 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 lplnneat.p . . . 4 𝑃 = (LPlanes‘𝐾)
42, 3lplnbase 39653 . . 3 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
5 eqid 2733 . . . 4 (le‘𝐾) = (le‘𝐾)
62, 5latref 18349 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋)
71, 4, 6syl2an 596 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃) → 𝑋(le‘𝐾)𝑋)
8 lplnneat.a . . . 4 𝐴 = (Atoms‘𝐾)
95, 8, 3lplnnleat 39661 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑋𝐴) → ¬ 𝑋(le‘𝐾)𝑋)
1093expia 1121 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃) → (𝑋𝐴 → ¬ 𝑋(le‘𝐾)𝑋))
117, 10mt2d 136 1 ((𝐾 ∈ HL ∧ 𝑋𝑃) → ¬ 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5093  cfv 6486  Basecbs 17122  lecple 17170  Latclat 18339  Atomscatm 39382  HLchlt 39469  LPlanesclpl 39611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470  df-llines 39617  df-lplanes 39618
This theorem is referenced by:  llncvrlpln  39677
  Copyright terms: Public domain W3C validator