| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domsdomtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| domsdomtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom 8902 | . . 3 ⊢ (𝐵 ≺ 𝐶 → 𝐵 ≼ 𝐶) | |
| 2 | domtr 8929 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐶) |
| 4 | simpr 484 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐵 ≺ 𝐶) | |
| 5 | ensym 8925 | . . . . . 6 ⊢ (𝐴 ≈ 𝐶 → 𝐶 ≈ 𝐴) | |
| 6 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐵) | |
| 7 | endomtr 8934 | . . . . . 6 ⊢ ((𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≼ 𝐵) | |
| 8 | 5, 6, 7 | syl2anr 597 | . . . . 5 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) ∧ 𝐴 ≈ 𝐶) → 𝐶 ≼ 𝐵) |
| 9 | domnsym 9016 | . . . . 5 ⊢ (𝐶 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐶) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) ∧ 𝐴 ≈ 𝐶) → ¬ 𝐵 ≺ 𝐶) |
| 11 | 10 | ex 412 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐵 ≺ 𝐶)) |
| 12 | 4, 11 | mt2d 136 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
| 13 | brsdom 8897 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
| 14 | 3, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 class class class wbr 5089 ≈ cen 8866 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: ensdomtr 9026 sdomtr 9028 2pwuninel 9045 card2on 9440 tskwe 9843 harval2 9890 prdom2 9897 infxpenlem 9904 alephsucdom 9970 pwsdompw 10094 infunsdom1 10103 fin34 10281 ondomon 10454 cardmin 10455 konigthlem 10459 gchpwdom 10561 gchina 10590 inar1 10666 tskord 10671 tskuni 10674 tskurn 10680 csdfil 23809 ctbssinf 37450 pibt2 37461 |
| Copyright terms: Public domain | W3C validator |