Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > domsdomtr | Structured version Visualization version GIF version |
Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
domsdomtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8723 | . . 3 ⊢ (𝐵 ≺ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | domtr 8748 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan2 592 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐶) |
4 | simpr 484 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐵 ≺ 𝐶) | |
5 | ensym 8744 | . . . . . 6 ⊢ (𝐴 ≈ 𝐶 → 𝐶 ≈ 𝐴) | |
6 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐵) | |
7 | endomtr 8753 | . . . . . 6 ⊢ ((𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≼ 𝐵) | |
8 | 5, 6, 7 | syl2anr 596 | . . . . 5 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) ∧ 𝐴 ≈ 𝐶) → 𝐶 ≼ 𝐵) |
9 | domnsym 8839 | . . . . 5 ⊢ (𝐶 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐶) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) ∧ 𝐴 ≈ 𝐶) → ¬ 𝐵 ≺ 𝐶) |
11 | 10 | ex 412 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐵 ≺ 𝐶)) |
12 | 4, 11 | mt2d 136 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
13 | brsdom 8718 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
14 | 3, 12, 13 | sylanbrc 582 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 class class class wbr 5070 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 |
This theorem is referenced by: ensdomtr 8849 sdomtr 8851 2pwuninel 8868 card2on 9243 tskwe 9639 harval2 9686 prdom2 9693 infxpenlem 9700 alephsucdom 9766 pwsdompw 9891 infunsdom1 9900 fin34 10077 ondomon 10250 cardmin 10251 konigthlem 10255 gchpwdom 10357 gchina 10386 inar1 10462 tskord 10467 tskuni 10470 tskurn 10476 csdfil 22953 ctbssinf 35504 pibt2 35515 |
Copyright terms: Public domain | W3C validator |