![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > domsdomtr | Structured version Visualization version GIF version |
Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
domsdomtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 9019 | . . 3 ⊢ (𝐵 ≺ 𝐶 → 𝐵 ≼ 𝐶) | |
2 | domtr 9046 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐶) |
4 | simpr 484 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐵 ≺ 𝐶) | |
5 | ensym 9042 | . . . . . 6 ⊢ (𝐴 ≈ 𝐶 → 𝐶 ≈ 𝐴) | |
6 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐵) | |
7 | endomtr 9051 | . . . . . 6 ⊢ ((𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≼ 𝐵) | |
8 | 5, 6, 7 | syl2anr 597 | . . . . 5 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) ∧ 𝐴 ≈ 𝐶) → 𝐶 ≼ 𝐵) |
9 | domnsym 9138 | . . . . 5 ⊢ (𝐶 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐶) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) ∧ 𝐴 ≈ 𝐶) → ¬ 𝐵 ≺ 𝐶) |
11 | 10 | ex 412 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐵 ≺ 𝐶)) |
12 | 4, 11 | mt2d 136 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
13 | brsdom 9014 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
14 | 3, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 class class class wbr 5148 ≈ cen 8981 ≼ cdom 8982 ≺ csdm 8983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 |
This theorem is referenced by: ensdomtr 9152 sdomtr 9154 2pwuninel 9171 card2on 9592 tskwe 9988 harval2 10035 prdom2 10044 infxpenlem 10051 alephsucdom 10117 pwsdompw 10241 infunsdom1 10250 fin34 10428 ondomon 10601 cardmin 10602 konigthlem 10606 gchpwdom 10708 gchina 10737 inar1 10813 tskord 10818 tskuni 10821 tskurn 10827 csdfil 23918 ctbssinf 37389 pibt2 37400 |
Copyright terms: Public domain | W3C validator |