MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domsdomtr Structured version   Visualization version   GIF version

Theorem domsdomtr 9053
Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
domsdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domsdomtr
StepHypRef Expression
1 sdomdom 8928 . . 3 (𝐵𝐶𝐵𝐶)
2 domtr 8955 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 593 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simpr 484 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
5 ensym 8951 . . . . . 6 (𝐴𝐶𝐶𝐴)
6 simpl 482 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
7 endomtr 8960 . . . . . 6 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
85, 6, 7syl2anr 597 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → 𝐶𝐵)
9 domnsym 9044 . . . . 5 (𝐶𝐵 → ¬ 𝐵𝐶)
108, 9syl 17 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → ¬ 𝐵𝐶)
1110ex 412 . . 3 ((𝐴𝐵𝐵𝐶) → (𝐴𝐶 → ¬ 𝐵𝐶))
124, 11mt2d 136 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
13 brsdom 8923 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
143, 12, 13sylanbrc 583 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   class class class wbr 5102  cen 8892  cdom 8893  csdm 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898
This theorem is referenced by:  ensdomtr  9054  sdomtr  9056  2pwuninel  9073  card2on  9483  tskwe  9879  harval2  9926  prdom2  9935  infxpenlem  9942  alephsucdom  10008  pwsdompw  10132  infunsdom1  10141  fin34  10319  ondomon  10492  cardmin  10493  konigthlem  10497  gchpwdom  10599  gchina  10628  inar1  10704  tskord  10709  tskuni  10712  tskurn  10718  csdfil  23814  ctbssinf  37387  pibt2  37398
  Copyright terms: Public domain W3C validator