MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domsdomtr Structured version   Visualization version   GIF version

Theorem domsdomtr 9063
Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
domsdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem domsdomtr
StepHypRef Expression
1 sdomdom 8927 . . 3 (𝐵𝐶𝐵𝐶)
2 domtr 8954 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan2 594 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
4 simpr 486 . . 3 ((𝐴𝐵𝐵𝐶) → 𝐵𝐶)
5 ensym 8950 . . . . . 6 (𝐴𝐶𝐶𝐴)
6 simpl 484 . . . . . 6 ((𝐴𝐵𝐵𝐶) → 𝐴𝐵)
7 endomtr 8959 . . . . . 6 ((𝐶𝐴𝐴𝐵) → 𝐶𝐵)
85, 6, 7syl2anr 598 . . . . 5 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → 𝐶𝐵)
9 domnsym 9050 . . . . 5 (𝐶𝐵 → ¬ 𝐵𝐶)
108, 9syl 17 . . . 4 (((𝐴𝐵𝐵𝐶) ∧ 𝐴𝐶) → ¬ 𝐵𝐶)
1110ex 414 . . 3 ((𝐴𝐵𝐵𝐶) → (𝐴𝐶 → ¬ 𝐵𝐶))
124, 11mt2d 136 . 2 ((𝐴𝐵𝐵𝐶) → ¬ 𝐴𝐶)
13 brsdom 8922 . 2 (𝐴𝐶 ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐶))
143, 12, 13sylanbrc 584 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   class class class wbr 5110  cen 8887  cdom 8888  csdm 8889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893
This theorem is referenced by:  ensdomtr  9064  sdomtr  9066  2pwuninel  9083  card2on  9497  tskwe  9893  harval2  9940  prdom2  9949  infxpenlem  9956  alephsucdom  10022  pwsdompw  10147  infunsdom1  10156  fin34  10333  ondomon  10506  cardmin  10507  konigthlem  10511  gchpwdom  10613  gchina  10642  inar1  10718  tskord  10723  tskuni  10726  tskurn  10732  csdfil  23261  ctbssinf  35906  pibt2  35917
  Copyright terms: Public domain W3C validator