| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domsdomtr | Structured version Visualization version GIF version | ||
| Description: Transitivity of dominance and strict dominance. Theorem 22(ii) of [Suppes] p. 97. (Contributed by NM, 10-Jun-1998.) (Revised by Mario Carneiro, 26-Apr-2015.) |
| Ref | Expression |
|---|---|
| domsdomtr | ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom 8928 | . . 3 ⊢ (𝐵 ≺ 𝐶 → 𝐵 ≼ 𝐶) | |
| 2 | domtr 8955 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐶) |
| 4 | simpr 484 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐵 ≺ 𝐶) | |
| 5 | ensym 8951 | . . . . . 6 ⊢ (𝐴 ≈ 𝐶 → 𝐶 ≈ 𝐴) | |
| 6 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≼ 𝐵) | |
| 7 | endomtr 8960 | . . . . . 6 ⊢ ((𝐶 ≈ 𝐴 ∧ 𝐴 ≼ 𝐵) → 𝐶 ≼ 𝐵) | |
| 8 | 5, 6, 7 | syl2anr 597 | . . . . 5 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) ∧ 𝐴 ≈ 𝐶) → 𝐶 ≼ 𝐵) |
| 9 | domnsym 9044 | . . . . 5 ⊢ (𝐶 ≼ 𝐵 → ¬ 𝐵 ≺ 𝐶) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) ∧ 𝐴 ≈ 𝐶) → ¬ 𝐵 ≺ 𝐶) |
| 11 | 10 | ex 412 | . . 3 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → (𝐴 ≈ 𝐶 → ¬ 𝐵 ≺ 𝐶)) |
| 12 | 4, 11 | mt2d 136 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → ¬ 𝐴 ≈ 𝐶) |
| 13 | brsdom 8923 | . 2 ⊢ (𝐴 ≺ 𝐶 ↔ (𝐴 ≼ 𝐶 ∧ ¬ 𝐴 ≈ 𝐶)) | |
| 14 | 3, 12, 13 | sylanbrc 583 | 1 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 class class class wbr 5102 ≈ cen 8892 ≼ cdom 8893 ≺ csdm 8894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 |
| This theorem is referenced by: ensdomtr 9054 sdomtr 9056 2pwuninel 9073 card2on 9483 tskwe 9879 harval2 9926 prdom2 9935 infxpenlem 9942 alephsucdom 10008 pwsdompw 10132 infunsdom1 10141 fin34 10319 ondomon 10492 cardmin 10493 konigthlem 10497 gchpwdom 10599 gchina 10628 inar1 10704 tskord 10709 tskuni 10712 tskurn 10718 csdfil 23814 ctbssinf 37387 pibt2 37398 |
| Copyright terms: Public domain | W3C validator |