![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolnelpln | Structured version Visualization version GIF version |
Description: No lattice volume is a lattice plane. (Contributed by NM, 19-Jun-2012.) |
Ref | Expression |
---|---|
lvolnelpln.p | β’ π = (LPlanesβπΎ) |
lvolnelpln.v | β’ π = (LVolsβπΎ) |
Ref | Expression |
---|---|
lvolnelpln | β’ ((πΎ β HL β§ π β π) β Β¬ π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 38537 | . . 3 β’ (πΎ β HL β πΎ β Lat) | |
2 | eqid 2731 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | lvolnelpln.v | . . . 4 β’ π = (LVolsβπΎ) | |
4 | 2, 3 | lvolbase 38753 | . . 3 β’ (π β π β π β (BaseβπΎ)) |
5 | eqid 2731 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
6 | 2, 5 | latref 18399 | . . 3 β’ ((πΎ β Lat β§ π β (BaseβπΎ)) β π(leβπΎ)π) |
7 | 1, 4, 6 | syl2an 595 | . 2 β’ ((πΎ β HL β§ π β π) β π(leβπΎ)π) |
8 | lvolnelpln.p | . . . 4 β’ π = (LPlanesβπΎ) | |
9 | 5, 8, 3 | lvolnlelpln 38760 | . . 3 β’ ((πΎ β HL β§ π β π β§ π β π) β Β¬ π(leβπΎ)π) |
10 | 9 | 3expia 1120 | . 2 β’ ((πΎ β HL β§ π β π) β (π β π β Β¬ π(leβπΎ)π)) |
11 | 7, 10 | mt2d 136 | 1 β’ ((πΎ β HL β§ π β π) β Β¬ π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 class class class wbr 5149 βcfv 6544 Basecbs 17149 lecple 17209 Latclat 18389 HLchlt 38524 LPlanesclpl 38667 LVolsclvol 38668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-lat 18390 df-clat 18457 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-llines 38673 df-lplanes 38674 df-lvols 38675 |
This theorem is referenced by: lplncvrlvol2 38790 lplncvrlvol 38791 |
Copyright terms: Public domain | W3C validator |