| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvolnelpln | Structured version Visualization version GIF version | ||
| Description: No lattice volume is a lattice plane. (Contributed by NM, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| lvolnelpln.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| lvolnelpln.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| lvolnelpln | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → ¬ 𝑋 ∈ 𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39363 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | lvolnelpln.v | . . . 4 ⊢ 𝑉 = (LVols‘𝐾) | |
| 4 | 2, 3 | lvolbase 39579 | . . 3 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | eqid 2730 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 6 | 2, 5 | latref 18407 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋) |
| 7 | 1, 4, 6 | syl2an 596 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → 𝑋(le‘𝐾)𝑋) |
| 8 | lvolnelpln.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 9 | 5, 8, 3 | lvolnlelpln 39586 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃) → ¬ 𝑋(le‘𝐾)𝑋) |
| 10 | 9 | 3expia 1121 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → (𝑋 ∈ 𝑃 → ¬ 𝑋(le‘𝐾)𝑋)) |
| 11 | 7, 10 | mt2d 136 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑉) → ¬ 𝑋 ∈ 𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Latclat 18397 HLchlt 39350 LPlanesclpl 39493 LVolsclvol 39494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-lat 18398 df-clat 18465 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 |
| This theorem is referenced by: lplncvrlvol2 39616 lplncvrlvol 39617 |
| Copyright terms: Public domain | W3C validator |