Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvolnelpln Structured version   Visualization version   GIF version

Theorem lvolnelpln 36844
Description: No lattice volume is a lattice plane. (Contributed by NM, 19-Jun-2012.)
Hypotheses
Ref Expression
lvolnelpln.p 𝑃 = (LPlanes‘𝐾)
lvolnelpln.v 𝑉 = (LVols‘𝐾)
Assertion
Ref Expression
lvolnelpln ((𝐾 ∈ HL ∧ 𝑋𝑉) → ¬ 𝑋𝑃)

Proof of Theorem lvolnelpln
StepHypRef Expression
1 hllat 36617 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 eqid 2822 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 lvolnelpln.v . . . 4 𝑉 = (LVols‘𝐾)
42, 3lvolbase 36832 . . 3 (𝑋𝑉𝑋 ∈ (Base‘𝐾))
5 eqid 2822 . . . 4 (le‘𝐾) = (le‘𝐾)
62, 5latref 17654 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋)
71, 4, 6syl2an 598 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉) → 𝑋(le‘𝐾)𝑋)
8 lvolnelpln.p . . . 4 𝑃 = (LPlanes‘𝐾)
95, 8, 3lvolnlelpln 36839 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑉𝑋𝑃) → ¬ 𝑋(le‘𝐾)𝑋)
1093expia 1118 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑉) → (𝑋𝑃 → ¬ 𝑋(le‘𝐾)𝑋))
117, 10mt2d 138 1 ((𝐾 ∈ HL ∧ 𝑋𝑉) → ¬ 𝑋𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2114   class class class wbr 5042  cfv 6334  Basecbs 16474  lecple 16563  Latclat 17646  HLchlt 36604  LPlanesclpl 36746  LVolsclvol 36747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-lat 17647  df-clat 17709  df-oposet 36430  df-ol 36432  df-oml 36433  df-covers 36520  df-ats 36521  df-atl 36552  df-cvlat 36576  df-hlat 36605  df-llines 36752  df-lplanes 36753  df-lvols 36754
This theorem is referenced by:  lplncvrlvol2  36869  lplncvrlvol  36870
  Copyright terms: Public domain W3C validator