| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 3atnelvolN | Structured version Visualization version GIF version | ||
| Description: The join of 3 atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 3atnelvol.j | ⊢ ∨ = (join‘𝐾) |
| 3atnelvol.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| 3atnelvol.v | ⊢ 𝑉 = (LVols‘𝐾) |
| Ref | Expression |
|---|---|
| 3atnelvolN | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39472 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 3 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 4 | 3atnelvol.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 5 | 3atnelvol.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 3, 4, 5 | hlatjcl 39476 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 7 | 6 | 3adant3r3 1185 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 8 | simpr3 1197 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | |
| 9 | 3, 5 | atbase 39398 | . . . . 5 ⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) |
| 11 | 3, 4 | latjcl 18355 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
| 12 | 2, 7, 10, 11 | syl3anc 1373 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
| 13 | eqid 2733 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 14 | 3, 13 | latref 18357 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 15 | 2, 12, 14 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 16 | 3atnelvol.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
| 17 | 13, 4, 5, 16 | lvolnle3at 39691 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 18 | 17 | an32s 652 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
| 19 | 18 | ex 412 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉 → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅))) |
| 20 | 15, 19 | mt2d 136 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 lecple 17178 joincjn 18227 Latclat 18347 Atomscatm 39372 HLchlt 39459 LVolsclvol 39602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-proset 18210 df-poset 18229 df-plt 18244 df-lub 18260 df-glb 18261 df-join 18262 df-meet 18263 df-p0 18339 df-lat 18348 df-clat 18415 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 |
| This theorem is referenced by: 2atnelvolN 39696 islvol2aN 39701 |
| Copyright terms: Public domain | W3C validator |