![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3atnelvolN | Structured version Visualization version GIF version |
Description: The join of 3 atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3atnelvol.j | ⊢ ∨ = (join‘𝐾) |
3atnelvol.a | ⊢ 𝐴 = (Atoms‘𝐾) |
3atnelvol.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
3atnelvolN | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 35172 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 466 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ Lat) |
3 | eqid 2771 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | 3atnelvol.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
5 | 3atnelvol.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 3, 4, 5 | hlatjcl 35175 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
7 | 6 | 3adant3r3 1199 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
8 | simpr3 1237 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | |
9 | 3, 5 | atbase 35098 | . . . . 5 ⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) |
11 | 3, 4 | latjcl 17259 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
12 | 2, 7, 10, 11 | syl3anc 1476 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
13 | eqid 2771 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
14 | 3, 13 | latref 17261 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
15 | 2, 12, 14 | syl2anc 573 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
16 | 3atnelvol.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
17 | 13, 4, 5, 16 | lvolnle3at 35390 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
18 | 17 | an32s 631 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
19 | 18 | ex 397 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉 → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅))) |
20 | 15, 19 | mt2d 133 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 lecple 16156 joincjn 17152 Latclat 17253 Atomscatm 35072 HLchlt 35159 LVolsclvol 35301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-lat 17254 df-clat 17316 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 df-lplanes 35307 df-lvols 35308 |
This theorem is referenced by: 2atnelvolN 35395 islvol2aN 35400 |
Copyright terms: Public domain | W3C validator |