Step | Hyp | Ref
| Expression |
1 | | hllat 38228 |
. . . 4
β’ (πΎ β HL β πΎ β Lat) |
2 | 1 | adantr 481 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄)) β πΎ β Lat) |
3 | | eqid 2732 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
4 | | 3atnelvol.j |
. . . . . 6
β’ β¨ =
(joinβπΎ) |
5 | | 3atnelvol.a |
. . . . . 6
β’ π΄ = (AtomsβπΎ) |
6 | 3, 4, 5 | hlatjcl 38232 |
. . . . 5
β’ ((πΎ β HL β§ π β π΄ β§ π β π΄) β (π β¨ π) β (BaseβπΎ)) |
7 | 6 | 3adant3r3 1184 |
. . . 4
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄)) β (π β¨ π) β (BaseβπΎ)) |
8 | | simpr3 1196 |
. . . . 5
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄)) β π
β π΄) |
9 | 3, 5 | atbase 38154 |
. . . . 5
β’ (π
β π΄ β π
β (BaseβπΎ)) |
10 | 8, 9 | syl 17 |
. . . 4
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄)) β π
β (BaseβπΎ)) |
11 | 3, 4 | latjcl 18391 |
. . . 4
β’ ((πΎ β Lat β§ (π β¨ π) β (BaseβπΎ) β§ π
β (BaseβπΎ)) β ((π β¨ π) β¨ π
) β (BaseβπΎ)) |
12 | 2, 7, 10, 11 | syl3anc 1371 |
. . 3
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄)) β ((π β¨ π) β¨ π
) β (BaseβπΎ)) |
13 | | eqid 2732 |
. . . 4
β’
(leβπΎ) =
(leβπΎ) |
14 | 3, 13 | latref 18393 |
. . 3
β’ ((πΎ β Lat β§ ((π β¨ π) β¨ π
) β (BaseβπΎ)) β ((π β¨ π) β¨ π
)(leβπΎ)((π β¨ π) β¨ π
)) |
15 | 2, 12, 14 | syl2anc 584 |
. 2
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄)) β ((π β¨ π) β¨ π
)(leβπΎ)((π β¨ π) β¨ π
)) |
16 | | 3atnelvol.v |
. . . . 5
β’ π = (LVolsβπΎ) |
17 | 13, 4, 5, 16 | lvolnle3at 38448 |
. . . 4
β’ (((πΎ β HL β§ ((π β¨ π) β¨ π
) β π) β§ (π β π΄ β§ π β π΄ β§ π
β π΄)) β Β¬ ((π β¨ π) β¨ π
)(leβπΎ)((π β¨ π) β¨ π
)) |
18 | 17 | an32s 650 |
. . 3
β’ (((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄)) β§ ((π β¨ π) β¨ π
) β π) β Β¬ ((π β¨ π) β¨ π
)(leβπΎ)((π β¨ π) β¨ π
)) |
19 | 18 | ex 413 |
. 2
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄)) β (((π β¨ π) β¨ π
) β π β Β¬ ((π β¨ π) β¨ π
)(leβπΎ)((π β¨ π) β¨ π
))) |
20 | 15, 19 | mt2d 136 |
1
β’ ((πΎ β HL β§ (π β π΄ β§ π β π΄ β§ π
β π΄)) β Β¬ ((π β¨ π) β¨ π
) β π) |