![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 3atnelvolN | Structured version Visualization version GIF version |
Description: The join of 3 atoms is not a lattice volume. (Contributed by NM, 17-Jul-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
3atnelvol.j | ⊢ ∨ = (join‘𝐾) |
3atnelvol.a | ⊢ 𝐴 = (Atoms‘𝐾) |
3atnelvol.v | ⊢ 𝑉 = (LVols‘𝐾) |
Ref | Expression |
---|---|
3atnelvolN | ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 35980 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ Lat) |
3 | eqid 2793 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
4 | 3atnelvol.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
5 | 3atnelvol.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 3, 4, 5 | hlatjcl 35984 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
7 | 6 | 3adant3r3 1175 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
8 | simpr3 1187 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | |
9 | 3, 5 | atbase 35906 | . . . . 5 ⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) |
11 | 3, 4 | latjcl 17478 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
12 | 2, 7, 10, 11 | syl3anc 1362 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) |
13 | eqid 2793 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
14 | 3, 13 | latref 17480 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
15 | 2, 12, 14 | syl2anc 584 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
16 | 3atnelvol.v | . . . . 5 ⊢ 𝑉 = (LVols‘𝐾) | |
17 | 13, 4, 5, 16 | lvolnle3at 36199 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
18 | 17 | an32s 648 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅)) |
19 | 18 | ex 413 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉 → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅)(le‘𝐾)((𝑃 ∨ 𝑄) ∨ 𝑅))) |
20 | 15, 19 | mt2d 138 | 1 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 class class class wbr 4956 ‘cfv 6217 (class class class)co 7007 Basecbs 16300 lecple 16389 joincjn 17371 Latclat 17472 Atomscatm 35880 HLchlt 35967 LVolsclvol 36110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-proset 17355 df-poset 17373 df-plt 17385 df-lub 17401 df-glb 17402 df-join 17403 df-meet 17404 df-p0 17466 df-lat 17473 df-clat 17535 df-oposet 35793 df-ol 35795 df-oml 35796 df-covers 35883 df-ats 35884 df-atl 35915 df-cvlat 35939 df-hlat 35968 df-llines 36115 df-lplanes 36116 df-lvols 36117 |
This theorem is referenced by: 2atnelvolN 36204 islvol2aN 36209 |
Copyright terms: Public domain | W3C validator |