MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recnz Structured version   Visualization version   GIF version

Theorem recnz 12642
Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
recnz ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ)

Proof of Theorem recnz
StepHypRef Expression
1 recgt1i 12116 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1))
21simprd 495 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) < 1)
31simpld 494 . . . 4 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < (1 / 𝐴))
4 zgt0ge1 12621 . . . 4 ((1 / 𝐴) ∈ ℤ → (0 < (1 / 𝐴) ↔ 1 ≤ (1 / 𝐴)))
53, 4syl5ibcom 244 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((1 / 𝐴) ∈ ℤ → 1 ≤ (1 / 𝐴)))
6 1re 11219 . . . 4 1 ∈ ℝ
7 0lt1 11741 . . . . . . . 8 0 < 1
8 0re 11221 . . . . . . . . 9 0 ∈ ℝ
9 lttr 11295 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
108, 6, 9mp3an12 1450 . . . . . . . 8 (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴))
117, 10mpani 693 . . . . . . 7 (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴))
1211imdistani 568 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
13 gt0ne0 11684 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
1412, 13syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ≠ 0)
15 rereccl 11937 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
1614, 15syldan 590 . . . 4 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) ∈ ℝ)
17 lenlt 11297 . . . 4 ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 1))
186, 16, 17sylancr 586 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 1))
195, 18sylibd 238 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((1 / 𝐴) ∈ ℤ → ¬ (1 / 𝐴) < 1))
202, 19mt2d 136 1 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wcel 2105  wne 2939   class class class wbr 5148  (class class class)co 7412  cr 11113  0cc0 11114  1c1 11115   < clt 11253  cle 11254   / cdiv 11876  cz 12563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218  df-n0 12478  df-z 12564
This theorem is referenced by:  halfnz  12645  facndiv  14253  dvdsprmpweqle  16824
  Copyright terms: Public domain W3C validator