![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > recnz | Structured version Visualization version GIF version |
Description: The reciprocal of a number greater than 1 is not an integer. (Contributed by NM, 3-May-2005.) |
Ref | Expression |
---|---|
recnz | ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recgt1i 12116 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1)) | |
2 | 1 | simprd 495 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) < 1) |
3 | 1 | simpld 494 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < (1 / 𝐴)) |
4 | zgt0ge1 12621 | . . . 4 ⊢ ((1 / 𝐴) ∈ ℤ → (0 < (1 / 𝐴) ↔ 1 ≤ (1 / 𝐴))) | |
5 | 3, 4 | syl5ibcom 244 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((1 / 𝐴) ∈ ℤ → 1 ≤ (1 / 𝐴))) |
6 | 1re 11219 | . . . 4 ⊢ 1 ∈ ℝ | |
7 | 0lt1 11741 | . . . . . . . 8 ⊢ 0 < 1 | |
8 | 0re 11221 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
9 | lttr 11295 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) | |
10 | 8, 6, 9 | mp3an12 1450 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((0 < 1 ∧ 1 < 𝐴) → 0 < 𝐴)) |
11 | 7, 10 | mpani 693 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (1 < 𝐴 → 0 < 𝐴)) |
12 | 11 | imdistani 568 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
13 | gt0ne0 11684 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ≠ 0) |
15 | rereccl 11937 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ) | |
16 | 14, 15 | syldan 590 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 / 𝐴) ∈ ℝ) |
17 | lenlt 11297 | . . . 4 ⊢ ((1 ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ) → (1 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 1)) | |
18 | 6, 16, 17 | sylancr 586 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (1 ≤ (1 / 𝐴) ↔ ¬ (1 / 𝐴) < 1)) |
19 | 5, 18 | sylibd 238 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((1 / 𝐴) ∈ ℤ → ¬ (1 / 𝐴) < 1)) |
20 | 2, 19 | mt2d 136 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ¬ (1 / 𝐴) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 (class class class)co 7412 ℝcr 11113 0cc0 11114 1c1 11115 < clt 11253 ≤ cle 11254 / cdiv 11876 ℤcz 12563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-n0 12478 df-z 12564 |
This theorem is referenced by: halfnz 12645 facndiv 14253 dvdsprmpweqle 16824 |
Copyright terms: Public domain | W3C validator |