| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnnelln | Structured version Visualization version GIF version | ||
| Description: No lattice plane is a lattice line. (Contributed by NM, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| lplnnelln.n | ⊢ 𝑁 = (LLines‘𝐾) |
| lplnnelln.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| lplnnelln | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → ¬ 𝑋 ∈ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hllat 39402 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | lplnnelln.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 4 | 2, 3 | lplnbase 39573 | . . 3 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
| 5 | eqid 2731 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 6 | 2, 5 | latref 18342 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋) |
| 7 | 1, 4, 6 | syl2an 596 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → 𝑋(le‘𝐾)𝑋) |
| 8 | lplnnelln.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
| 9 | 5, 8, 3 | lplnnlelln 39582 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋(le‘𝐾)𝑋) |
| 10 | 9 | 3expia 1121 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → (𝑋 ∈ 𝑁 → ¬ 𝑋(le‘𝐾)𝑋)) |
| 11 | 7, 10 | mt2d 136 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → ¬ 𝑋 ∈ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 Basecbs 17115 lecple 17163 Latclat 18332 HLchlt 39389 LLinesclln 39530 LPlanesclpl 39531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18195 df-poset 18214 df-plt 18229 df-lub 18245 df-glb 18246 df-join 18247 df-meet 18248 df-p0 18324 df-lat 18333 df-clat 18400 df-oposet 39215 df-ol 39217 df-oml 39218 df-covers 39305 df-ats 39306 df-atl 39337 df-cvlat 39361 df-hlat 39390 df-llines 39537 df-lplanes 39538 |
| This theorem is referenced by: llncvrlpln2 39596 llncvrlpln 39597 |
| Copyright terms: Public domain | W3C validator |