![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnnelln | Structured version Visualization version GIF version |
Description: No lattice plane is a lattice line. (Contributed by NM, 19-Jun-2012.) |
Ref | Expression |
---|---|
lplnnelln.n | ⊢ 𝑁 = (LLines‘𝐾) |
lplnnelln.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnnelln | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → ¬ 𝑋 ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 35384 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2799 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | lplnnelln.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
4 | 2, 3 | lplnbase 35555 | . . 3 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
5 | eqid 2799 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | 2, 5 | latref 17368 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋) |
7 | 1, 4, 6 | syl2an 590 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → 𝑋(le‘𝐾)𝑋) |
8 | lplnnelln.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
9 | 5, 8, 3 | lplnnlelln 35564 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋(le‘𝐾)𝑋) |
10 | 9 | 3expia 1151 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → (𝑋 ∈ 𝑁 → ¬ 𝑋(le‘𝐾)𝑋)) |
11 | 7, 10 | mt2d 134 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃) → ¬ 𝑋 ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 class class class wbr 4843 ‘cfv 6101 Basecbs 16184 lecple 16274 Latclat 17360 HLchlt 35371 LLinesclln 35512 LPlanesclpl 35513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-proset 17243 df-poset 17261 df-plt 17273 df-lub 17289 df-glb 17290 df-join 17291 df-meet 17292 df-p0 17354 df-lat 17361 df-clat 17423 df-oposet 35197 df-ol 35199 df-oml 35200 df-covers 35287 df-ats 35288 df-atl 35319 df-cvlat 35343 df-hlat 35372 df-llines 35519 df-lplanes 35520 |
This theorem is referenced by: llncvrlpln2 35578 llncvrlpln 35579 |
Copyright terms: Public domain | W3C validator |