Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  llnneat Structured version   Visualization version   GIF version

Theorem llnneat 39552
Description: A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.)
Hypotheses
Ref Expression
llnneat.a 𝐴 = (Atoms‘𝐾)
llnneat.n 𝑁 = (LLines‘𝐾)
Assertion
Ref Expression
llnneat ((𝐾 ∈ HL ∧ 𝑋𝑁) → ¬ 𝑋𝐴)

Proof of Theorem llnneat
StepHypRef Expression
1 hllat 39401 . . 3 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 eqid 2731 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 llnneat.n . . . 4 𝑁 = (LLines‘𝐾)
42, 3llnbase 39547 . . 3 (𝑋𝑁𝑋 ∈ (Base‘𝐾))
5 eqid 2731 . . . 4 (le‘𝐾) = (le‘𝐾)
62, 5latref 18344 . . 3 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋)
71, 4, 6syl2an 596 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋(le‘𝐾)𝑋)
8 llnneat.a . . . 4 𝐴 = (Atoms‘𝐾)
95, 8, 3llnnleat 39551 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑁𝑋𝐴) → ¬ 𝑋(le‘𝐾)𝑋)
1093expia 1121 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑁) → (𝑋𝐴 → ¬ 𝑋(le‘𝐾)𝑋))
117, 10mt2d 136 1 ((𝐾 ∈ HL ∧ 𝑋𝑁) → ¬ 𝑋𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111   class class class wbr 5091  cfv 6481  Basecbs 17117  lecple 17165  Latclat 18334  Atomscatm 39301  HLchlt 39388  LLinesclln 39529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-proset 18197  df-poset 18216  df-plt 18231  df-glb 18248  df-p0 18326  df-lat 18335  df-covers 39304  df-ats 39305  df-atl 39336  df-cvlat 39360  df-hlat 39389  df-llines 39536
This theorem is referenced by:  2atneat  39553  islln2a  39555  cdleme22b  40379  cdlemh  40855
  Copyright terms: Public domain W3C validator