Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnneat | Structured version Visualization version GIF version |
Description: A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.) |
Ref | Expression |
---|---|
llnneat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llnneat.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llnneat | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37377 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | llnneat.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
4 | 2, 3 | llnbase 37523 | . . 3 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
5 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | 2, 5 | latref 18159 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋) |
7 | 1, 4, 6 | syl2an 596 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋(le‘𝐾)𝑋) |
8 | llnneat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | 5, 8, 3 | llnnleat 37527 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋(le‘𝐾)𝑋) |
10 | 9 | 3expia 1120 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → (𝑋 ∈ 𝐴 → ¬ 𝑋(le‘𝐾)𝑋)) |
11 | 7, 10 | mt2d 136 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 Basecbs 16912 lecple 16969 Latclat 18149 Atomscatm 37277 HLchlt 37364 LLinesclln 37505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-proset 18013 df-poset 18031 df-plt 18048 df-glb 18065 df-p0 18143 df-lat 18150 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 |
This theorem is referenced by: 2atneat 37529 islln2a 37531 cdleme22b 38355 cdlemh 38831 |
Copyright terms: Public domain | W3C validator |