Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > llnneat | Structured version Visualization version GIF version |
Description: A lattice line is not an atom. (Contributed by NM, 19-Jun-2012.) |
Ref | Expression |
---|---|
llnneat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
llnneat.n | ⊢ 𝑁 = (LLines‘𝐾) |
Ref | Expression |
---|---|
llnneat | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37304 | . . 3 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | llnneat.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
4 | 2, 3 | llnbase 37450 | . . 3 ⊢ (𝑋 ∈ 𝑁 → 𝑋 ∈ (Base‘𝐾)) |
5 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
6 | 2, 5 | latref 18074 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾)) → 𝑋(le‘𝐾)𝑋) |
7 | 1, 4, 6 | syl2an 595 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋(le‘𝐾)𝑋) |
8 | llnneat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
9 | 5, 8, 3 | llnnleat 37454 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑋 ∈ 𝐴) → ¬ 𝑋(le‘𝐾)𝑋) |
10 | 9 | 3expia 1119 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → (𝑋 ∈ 𝐴 → ¬ 𝑋(le‘𝐾)𝑋)) |
11 | 7, 10 | mt2d 136 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → ¬ 𝑋 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Latclat 18064 Atomscatm 37204 HLchlt 37291 LLinesclln 37432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-proset 17928 df-poset 17946 df-plt 17963 df-glb 17980 df-p0 18058 df-lat 18065 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 |
This theorem is referenced by: 2atneat 37456 islln2a 37458 cdleme22b 38282 cdlemh 38758 |
Copyright terms: Public domain | W3C validator |